Title: Chaos and Irreversibility:
1Chaos and Irreversibility An introduction to
the Loschmidt echo
Diego A. Wisniacki
UBA
2Overview
- Introduction
- Loschmidt echo
- Loschmidt echo and chaos
- Regimes of Loschmidt echo
- Decoherence and Loschmidt echo
- Experiments
- Final Remarks
3Colaboradores-Referencias
Colaborators
- Horacio Pastawski (UNC)
- Fernando Cuccietti (Los Alamos)
- Eduardo Vergini (TANDAR, Buenos Aires)
- Doron Cohen (BGU)
- Florentino Borondo (UAM, Madrid)
- Rosa Benito (UPM, Madrid)
4Colaboradores-Referencias
Introduction
What is chaos in classical mechanics?
5Colaboradores-Referencias
Introduction
6Colaboradores-Referencias
Introduction
and
7Colaboradores-Referencias
Introduction
8Colaboradores-Referencias
Introduction
9Colaboradores-Referencias
Introduction
Sensitivity to initial conditions
How it can be measure?
10Colaboradores-Referencias
Introduction
How it can be measure?
Liapunov Exponents
11Colaboradores-Referencias
Introduction
Lets make the same program in quantum mechanics
and
So
12Colaboradores-Referencias
Loschmidt Echo
In 1984 A. Peres proposed
Perturbed evolution
Josef Loschmidt (1821-1895)
13Colaboradores-Referencias
Loschmidt Echo
Sensitivity to perturbations
14Colaboradores-Referencias
Loschmidt Echo
Irreversibility
15Colaboradores-Referencias
Loschmidt Echo
Peres, 1984 PRA
Coupled rotator model
16Loschmidt Echo and Chaos
Colaboradores-Referencias
Jalabert-Pastawski PRL 2001
- Analytical semiclassical study of the LE
- Initial state localized state
- Semiclassical aproximation for propagator K
17Loschmidt Echo and Chaos
Colaboradores-Referencias
Jalabert-Pastawski PRL 2001
- Perturbation static disordered potential
- The Loschmidt echo has two contributions
l is the Lyapunov exponent of the unperturbed
Hamiltonian!!!!
18Loschmidt Echo and Chaos
Colaboradores-Referencias
What is the behavior of LE if H0 is integrable?
Jacquod et al 2003
- Semiclassical aproximation for K idem
Jalabert-Pastawski
- The Loschmidt echo has two contributions
Power law decay
19Loschmidt Echo and Chaos
Colaboradores-Referencias
Jacquod et al 2003
- Numerical check kicked top
Increase of the perturbation
20Loschmidt Echo and Chaos
Colaboradores-Referencias
Jacquod et al 2003
21Colaboradores-Referencias
Regimes of the LE
The LE depends on
- The perturbation S
- The initial state Y
- The time t
22Colaboradores-Referencias
Regimes of the LE
Regimes of the LE with perturbation S
Jacquod Silvestrov Beenakker PRE 2001
S
23Colaboradores-Referencias
Regimes of the LE
Regimes of the LE with perturbation S
If the perturbation matrix
Perturbation theory
element is much smaller than D
Gaussian decay
Variance of level velocities
24Colaboradores-Referencias
Regimes of the LE
Regimes of the LE with perturbation S
If
S
Relates old and new eigenstates
LDOS
25Colaboradores-Referencias
Regimes of the LE
Regimes of the LE with perturbation S
If
LDOS
Relates old and new eigenstates
Width of LDOS
FGR decay
26Colaboradores-Referencias
Regimes of the LE
Regimes of the LE with perturbation S
If
Liapunov exponent
Liapunov Regime !!!!!!!!!
27Colaboradores-Referencias
Regimes of the LE
Regimes of the LE in the stadium billiard
S
28Colaboradores-Referencias
Regimes of the LE
Regimes of the LE in the stadium billiard
g
exp(-g t)
l
G(S)/2
S
Non-universal
29Colaboradores-Referencias
Regimes of the LE
Regimes of the LE in the Lorentz gas
M(t)0.09
30Colaboradores-Referencias
Regimes of the LE
Regimes of the LE in the Lorentz gas
31Colaboradores-Referencias
Regimes of the LE
Dependence of the LE with the initial state
Wisniacki-Cohen 2002
Is universal the Lyapunov regime?
Initial state eigenstate
But
Then Physics of the LE LDOS??
32Colaboradores-Referencias
Regimes of the LE
Dependence of the LE with the initial state
Wisniacki-Cohen 2002
New V_ijrandom(-1)V_ij
No lyapunov regime!!!!
33Colaboradores-Referencias
Regimes of the LE
Dependence of the LE with the initial state
Wisniacki-Cohen 2002
No lyapunov regime!!!!
34Colaboradores-Referencias
Regimes of the LE
Short time decay of the LE
Wisniacki 2003
Why?
Experimental relevant regime??
Perturbed Hamiltonian
Width of LDOS
We show
depends on Y and V
35Colaboradores-Referencias
Regimes of the LE
Short time decay of the LE
Wisniacki 2003
36Colaboradores-Referencias
Regimes of the LE
Short time decay of the LE
Initial state eigenfunction of Ho
37Colaboradores-Referencias
Regimes of the LE
Short time decay of the LE
Initial state gaussian wave packet
Initial state evolved gaussian wave packet
38Colaboradores-Referencias
Decoherence and the LE
Decoherence -gt lost of quantum coherence -gt
quantum-classical transition
Zurek-Paz (1994)
S
Environment
Chaotic
System
t
Lyapunov exponent
independent of the coupling with the
environment
Perturbation independent regime
As Loschmidt echo but with non-unitary evolution
39Colaboradores-Referencias
Decoherence and the LE
Direct connection between decoherence and the LE
Cucchietti et al (2003)
Density matrix evolved by unperturbed U
Unitary evo.
Non Unitary evo.
Lyapunov regime
FGR
They showed
40Colaboradores-Referencias
Experiments
- MNR polarization echo Physica A 00 Pastawski
- Microwave cavity PRL 05 Stockmann
- NMR Information processor PRL 05 Laflamme
41Colaboradores-Referencias
Experiments
MNR polarization echo Physica A 00 Pastawski
- Single crystal of ferrocene
- Many-body system
- Gaussian decay
- Perturbation independent
- regime
42Colaboradores-Referencias
Experiments
Microwave cavity PRL 05 Stockmann
- Electromagnetic cavity equivalence of
- Helmholtz and Schrodinger eq.
- Measure the stationary scattering matrix element
- RMT theoretical result
200 mm
438 mm
43Colaboradores-Referencias
Experiments
NMR Information processor PRL 05 Laflamme et al
- Measure of the LE in an Nuclear Magnetic
Resonance experiment. - Idea Characterization of Complex Quantum
Dynamics with a - Scalable NMR Information Processor ---gt
understanding the - performance and improvement of the device
- It is implementing in an scalable circuit in
which the measure is - done in one q-bit
- U unitary map, P perturbation
- U chaotic o regular
- 5 q-bits
44Colaboradores-Referencias
Experiments
NMR Information processor PRL 05 Laflamme et al
Regular U
different perturbations
FGR decay
Chaotic U
different perturbations
FGR decay
45Colaboradores-Referencias
Final Remarks
- Is the LE a good measure of 'quantum chaos'?
- Regimes of the LE ---gt complex behaviour
- Irreversibility and LE
- Experiments -nobody see the Lyapunov regime
- -microwave billiards and
NMR processor - FGR regime
- -PID in the many body
system - Other works LE in a many body system, LE
freeze,...