ENGR 254 - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

ENGR 254

Description:

ENGR 254 Lecture 6 2-2-09 DeMorgan Symbol Equivalence Likewise for OR (be sure to check errata!) FIG 4-4 DeMorgan Symbols Definitions (Sec. 4.1.6) Literal A ... – PowerPoint PPT presentation

Number of Views:154
Avg rating:3.0/5.0
Slides: 21
Provided by: Jerr2173
Category:
Tags: engr | illustrator

less

Transcript and Presenter's Notes

Title: ENGR 254


1
ENGR 254
  • Lecture 6
  • 2-2-09

2
DeMorgan Symbol Equivalence
3
Likewise for OR
  • (be sure to check errata!) FIG 4-4

4
DeMorgan Symbols
5
Definitions (Sec. 4.1.6)
  • Literal A variable or the complement of a
    variable. Example X, Y, Y, etc.
  • Product term A single literal or product of
    literals. Example
  • Sum-of-products expression A logical sum of
    product terms. Example
  • Sum term A single literal of sum of literals.
    Example
  • Product-of-sums expression A logical product of
    sum terms.
  • Example

6
Definitions
  • Normal term A product or sum term in which no
    variable appears more than once.
  • Example non-normal
  • Example normal
  • Minterm (n variables) A normal product term
    with n literals. Example
  • Maxterm (n variables) A normal sum term with n
    literals. Example

7
Truth table vs. minterms maxterms
8
Combinational analysis

X Y Z F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

0
1
2
3
4
5
6
7
9
Signal expressions
  • Multiply outF ((X Y) Z) (X Y Z)
    (X Z) (Y Z) (X Y Z)

10
New circuit, same function
  • F X Z Y Z X Y Z

11
Add out logic function
  • Circuit

12
Shortcut Symbol substitution
13
Different circuit, same function
14
Another example
15
Sum-of-products form
16
Product-of-sums form
P-of-S preferred in CMOS, TTL (NAND-NAND)
17
Brute-force design
row N3 N2 N1 N0 F 0 0 0 0 0 0
1 0 0 0 1 1 2 0 0 1 0
1 3 0 0 1 1 1 4 0 1 0
0 0 5 0 1 0 1 1 6 0 1
1 0 0 7 0 1 1 1 1 8 1
0 0 0 0 9 1 0 0 1 0 10
1 0 1 0 0 11 0 0 1 1 1 12
1 1 0 0 0 13 1 1 0 1
1 14 1 1 1 0 0 15 1 1 1 1
0
  • Truth table --gt canonical sum (sum of minterms)
  • Exampleprime-number detector
  • 4-bit input, N3N2N1N0

F(N3, N2, N1, N0) SN3N2N1N0(1,2,3,5,7,11,13)
18
Minterm list --gt canonical sum
19
Algebraic simplification
  • Theorem T8,
  • Reduce number of gates and gate inputs

20
Resulting circuit
Write a Comment
User Comments (0)
About PowerShow.com