Title: Crystal Geometry
1???? ????? ???? ???? (?????? ???? ) ????? ????
??? ?? ???? ? ?? ???? ????? ??? ????
2??????
3???? ???? ?? ???? ?? ????
4???? ???? ?? ???? ?? ???? NaCl
5?????? ?????? ???? ????(??? ?????)
6???? ????? ?? ???? ???? ??? ????
7- or if you dont start from an atom
8??? ???? ???? ????
9??? ???? ????? ???? ???? ????
10(No Transcript)
11??? ???? ????? ?? ????
12?? ????? ?? ??? ????? ?? ?? ????? ????? ???? ???
?????
13(No Transcript)
141-CUBIC
15a- Simple Cubic (SC)
16(No Transcript)
17Face Centered Cubic (FCC)
- 4 ??? ?? ???? ????? ???? ????
- (Cu,Ni,Pb..etc) ?????? fcc. ?????
183 - Face Centered Cubic
Atoms are all same.
192 - HEXAGONAL SYSTEM
- ?? ??? ?? ???? ????? ???? ????.
202 - HEXAGONAL SYSTEM
Atoms are all same.
21(No Transcript)
223 - TRICLINIC 4 - MONOCLINIC CRYSTAL SYSTEM
- ??? ?????? ?????? ????? ????? ?? ??????
Monoclinic (Simple) a g 90o, ß ¹ 90o a ¹ b
¹c
Monoclinic (Base Centered) a g 90o, ß ¹ 90o
a ¹ b ¹ c,
Triclinic (Simple) a ¹ ß ¹ g ¹ 90 oa ¹ b ¹ c
235 - ORTHORHOMBIC SYSTEM
Orthorhombic (FC) a ß g 90o a ¹ b ¹ c
Orthorhombic (Base-centred)a ß g 90o a ¹
b ¹ c
Orthorhombic (BC) a ß g 90o a ¹ b ¹ c
Orthorhombic (Simple) a ß g 90o a ¹ b ¹ c
246 TETRAGONAL SYSTEM
Tetragonal (BC) a ß g 90o a b ¹ c
Tetragonal (P) a ß g 90o a b ¹ c
257 - Rhombohedral (R) or Trigonal
Rhombohedral (R) or Trigonal (S) a b c, a
ß g ¹ 90o
26Miller Indices
- ????? ??? ???? ???????? ????? ?? ??? ????? ????
?? ?? ??????? ???? ?? ???? - ??? ????? ?? ?? ???? ?? ???? ?? ???? ?? ????? ??
?? ????? ?? ????? ????? ?? ???? ????? - ? ???? ????????? ????? ?? ??? ?? ????? ????
?????? ??? ???? ???? ???? ???? ?? ????.
27Example-1
Axis X Y Z
Intercept points 1 8 8
Reciprocals 1/1 1/ 8 1/ 8
Smallest Ratio 1 0 0
Miller Indices (100) Miller Indices (100) Miller Indices (100) Miller Indices (100)
28Example-2
Axis X Y Z
Intercept points 1 1 8
Reciprocals 1/1 1/ 1 1/ 8
Smallest Ratio 1 1 0
Miller Indices (110) Miller Indices (110) Miller Indices (110) Miller Indices (110)
29Example-3
Axis X Y Z
Intercept points 1 1 1
Reciprocals 1/1 1/ 1 1/ 1
Smallest Ratio 1 1 1
Miller Indices (111) Miller Indices (111) Miller Indices (111) Miller Indices (111)
30Example-4
Axis X Y Z
Intercept points 1/2 1 8
Reciprocals 1/(½) 1/ 1 1/ 8
Smallest Ratio 2 1 0
Miller Indices (210) Miller Indices (210) Miller Indices (210) Miller Indices (210)
31Example-5
Axis a b c
Intercept points 1 8 ½
Reciprocals 1/1 1/ 8 1/(½)
Smallest Ratio 1 0 2
Miller Indices (102) Miller Indices (102) Miller Indices (102) Miller Indices (102)
32Example-6
Axis a b c
Intercept points -1 8 ½
Reciprocals 1/-1 1/ 8 1/(½)
Smallest Ratio -1 0 2
Miller Indices (102) Miller Indices (102) Miller Indices (102) Miller Indices (102)
33Miller Indices
Indices of the plane (Miller) (2,3,3)
Indices of the direction 2,3,3
34????? ??? ???? ? ?????? ????? ???? ?? ????
35????? ??? ???? ? ?????? ????? ???? ?? ????
36?????? ????? ? ????? ???? ???? ?? ???? ????? ???
???? ?????? ?????.
37(No Transcript)
38Example-7
39Indices of a Family or Form
??? hkl ???? ???? ????? ??? ???? ????? ??
????? (hkl) ?? ???? ?? ??? ?? ?????? ???? ??
?????? ?? ??? ?? ????
403D 14 BRAVAIS LATTICES AND THE SEVEN CRYSTAL
SYSTEM
- ???? 14 ???? ????? ???? ???? ?? ???? ?? ???? ??
?? ??????. - ??? 14 ???? ??? ?? ??? ????? ????? ????? ???
??????? ?? ????. - Cubic Crystal System (SC, BCC,FCC)
- Hexagonal Crystal System (S)
- Triclinic Crystal System (S)
- Monoclinic Crystal System (S, Base-C)
- Orthorhombic Crystal System (S, Base-C, BC, FC)
- Tetragonal Crystal System (S, BC)
- Trigonal (Rhombohedral) Crystal System (S)
413Hexagonal Close-Packed Str.
42Hexagonal Close-packed Structure
ab a120, c1.633a, basis (0,0,0) (2/3a
,1/3a,1/2c)
43Packing
Close pack
Sequence AAAA - simple cubic
- Sequence ABABAB..
- hexagonal close pack
Sequence ABAB - body centered cubic
Sequence ABCABCAB.. ??
44First Brillouin Zone Two Dimensional Oblique
Lattice
45First Four Brillouin Zones Square Lattice
46All Brillouin Zones Square Lattice
47Primitive Lattice Vectors BCC Lattice
48First Brillouin Zone BCC
49Primitive Lattice Vectors FCC
50Brillouin Zones FCC
51First Brillouin Zone BCC
52First Brillouin Zone FCC
53X-ray Diffraction
Typical interatomic distances in solid are of the
order of an angstrom. Thus the typical wavelength
of an electromagnetic probe of such distances
Must be of the order of an angstrom.
Upon substituting this value for the wavelength
into the energy equation, We find that E is of
the order of 12 thousand eV, which is a typical
X-ray Energy. Thus X-ray diffraction of crystals
is a standard probe.
54(No Transcript)
55(No Transcript)
56(No Transcript)
57(No Transcript)
58(No Transcript)
59Wavelength vs particle energy
60Bragg Diffraction Braggs Law
61Braggs Law
The integer n is known as the order of the
corresponding Reflection. The composition of
the basis determines the relative Intensity of
the various orders of diffraction.
62Many sets of lattice planes produce Bragg
diffraction
63BRAGGs EQUATION
Deviation 2?
Ray 1
Ray 2
?
?
?
d
?
?
dSin?
- The path difference between ray 1 and ray 2 2d
Sin? - For constructive interference n? 2d Sin?
64(No Transcript)
65(No Transcript)
66(No Transcript)
67Bragg Spectrometer
68Bragg Peaks
69- A beam of X-rays directed at a crystal interacts
with the electrons of the atoms in the crystal - The electrons oscillate under the influence of
the incoming X-Rays and become secondary
sources of EM radiation - The secondary radiation is in all directions
- The waves emitted by the electrons have the same
frequency as the incoming X-rays ? coherent - The emission will undergo constructive or
destructive interference with waves scattered
from other atoms
Secondary emission
Incoming X-rays
70Sets Electron cloud into oscillation
Sets nucleus (with protons) into
oscillation Small effect ? neglected
71Oscillating charge re-radiates ? In phase with
the incoming x-rays
72von Laue Formulation of X-Ray Diffraction
73Condition for Constructive Interference
74Bragg Scattering
K
75The Laue Condition
76Ewald Construction
77Crystal structure determination
Many ?s (orientations) Powder specimen
POWDER METHOD
Monochromatic X-rays
Single ?
LAUETECHNIQUE
Panchromatic X-rays
ROTATINGCRYSTALMETHOD
? Varied by rotation
Monochromatic X-rays
78THE POWDER METHOD
Cone of diffracted rays
79POWDER METHOD
Diffraction cones and the Debye-Scherrer geometry
Different cones for different reflections
Film may be replaced with detector
http//www.matter.org.uk/diffraction/x-ray/powder_
method.htm
80Schematic X-Ray Diffractometer
Detector
X-Ray Source
Powdered sample
81Sample XRD Pattern
82strong intensity prominent crystal plane
weak intensity subordinate crystal plane
background radiation
83Determine D-Spacing from XRD patterns
- Braggs Law
- n? 2dsin?
- n reflection order (1,2,3,4,etc)
- ? radiation wavelength (1.54 angstroms)
- d spacing between planes of atoms (angstroms)
- ? angle of incidence (degrees)
84strong intensity prominent crystal plane
n? 2dsin? (1)(1.54) 2dsin(15.5 degrees) 1.54
2d(0.267) d 2.88 angstroms
background radiation
85d-spacing Intensity
2.88 100
2.18 46
1.81 31
1.94 25
2.10 20
1.75 15
2.33 10
2.01 10
1.66 5
1.71 5
86The Bragg equation may be rearranged (if n1)
from
to
If the value of 1/(dh,k,l)2 in the cubic system
equation above is inserted into this form of the
Bragg equation you have
Since in any specific case a and l are constant
and if l2/4a2 A
87Insert the values into a table and compute sin?
and sin2?. Since the lowest value of sin2? is 3A
and the next is 4A the first Entry in the Calc.
sin2? column is (0.10854/3)4 etc.
d/Å Sin? Sin2? Calc. Sin2? (h, k, I)
2.338 0.32945 0.10854 (1,1,1)
2.024 0.38056 0.14482 0.14472 (2,0,0)
1.431 0.53826 0.28972 0.28944 (2,2,0)
1.221 0.63084 0.39795 0.39798 (3,1,1)
1.169 0.65890 0.43414 0.43416 (2,2,2)
1.0124 0.76082 0.57884 0.57888 (4,0,0)
0.9289 0.82921 0.68758 0.68742 (3,3,1)
0.9055 0.85063 0.72358 0.72360 (4,2,0)
The reflections have now been indexed.