Title: ECE 875: Electronic Devices
1ECE 875Electronic Devices
- Prof. Virginia Ayres
- Electrical Computer Engineering
- Michigan State University
- ayresv_at_msu.edu
2Lecture 03, 13 Jan 14
Chp. 01 Crystals Direct space primitive
cells Reciprocal space Brillouin zones
3Ref. Dissertation Enzo Ungersbock, Advanced
modeling of strained CMOS technology
Only shows one of the four inside atoms
c
a
b
Diamond can be considered as two
inter-penetrating fcc lattices. Same basis
vectors as fcc a a/2 x 0 y a/2 z b
a/2 x a/2 y 0 z c 0 x a/2 y a/2
z Same primitive cell volume a3/4 Make it
diamond by putting a two-atom basis at each
vertex of the fcc primitive cell. Pair a 2nd atom
at (¼ , ¼ , ¼) x a with every fcc atom in the
primitive cell
4Rock salt can be also considered as two
inter-penetrating fcc lattices.
5Rock salt can be also considered as two
inter-penetrating fcc lattices.
Ref http//sunlight.caltech.edu/chem140a/Ch1aCrys
tals1.pdf
6Rock salt can be also considered as two
inter-penetrating fcc lattices.
Ref http//sunlight.caltech.edu/chem140a/Ch1aCrys
tals1.pdf
7Rock salt can be also considered as two
inter-penetrating fcc lattices.
Ref http//sunlight.caltech.edu/chem140a/Ch1aCrys
tals1.pdf
8Rock salt can be also considered as two
inter-penetrating fcc lattices.
Ref http//sunlight.caltech.edu/chem140a/Ch1aCrys
tals1.pdf
9Rock salt can be also considered as two
inter-penetrating fcc lattices.
Ref http//sunlight.caltech.edu/chem140a/Ch1aCrys
tals1.pdf
The two interpenetrating fcc lattices are
displaced (½, ½ , ½) x aNote also have pairs
of atoms displaced (½, ½, ½) x a
10Rock salt can be also considered as two
inter-penetrating fcc lattices.
Ref http//www.theochem.unito.it/crystal_tuto/mss
c2008_cd/tutorials/surfaces/surfaces_tut.html
MgO crystallizes in the Rock salt structure
11MgO crystallizes in the Rock salt structure
Rock salt can be also considered as two
inter-penetrating fcc lattices. Same basis
vectors as fcc a a/2 x 0 y a/2 z b
a/2 x a/2 y 0 z c 0 x a/2 y a/2
z Same primitive cell volume a3/4 Make it Rock
salt by putting a two-atom basis at each vertex
of the fcc primitive cell. Pair a 2nd atom at (½
, ½, ½) x a with every fcc atom in the primitive
cell
126 conventional cubic Unit cells 4/6 have same
fcc primitive cell and basis vectors fcc single
atom basis Diamond/zb two atom basis, fcc atoms
paired with atoms at (¼, ¼ , ¼ ) x a Rock salt
two atom basis, fcc atoms paired with atoms at
(½, ½ , ½) x a
Wurtzite two interpenetrating hcp
lattices Same tetrahedral bonding as
diamond/zincblende
13The bcc and fcc lattices are reciprocals of each
other Pr. 06.
14Easier modelling Also crystal similarities can
enable heterostructures and biphasic
homostructures
Wurtzite two interpenetrating hcp
lattices Same tetrahedral bonding as
diamond/zincblende
15Gallium Nitride
Plan view
Refs Jacobs, Ayres, et al, NanoLett, 07 05
(2007) Jacobs, Ayres, et al, Nanotech. 19
405706 (2008)
16Gallium Nitride
Cross section view
Refs Jacobs, Ayres, et al, NanoLett, 07 05
(2007) Jacobs, Ayres, et al, Nanotech. 19
405706 (2008)
17Reciprocal space (Reciprocal lattice)
18HW01
C-C
Find Miller indices in a possibly non-standard
direction Miller indices describe a general
direction k. Miller indices describe a plane
(hkl). The normal to that plane describes the
direction. In an orthogonal system direction
hx ky lz In a non-orthogonal system
direction ha kb lc
19Example Streetman and Banerjee Pr. 1.3 Label
the planes illustrated in fig. P1-3
20Answer Cubic system Orthogonal standard plane
and direction in Reciprocal space
21Answer Cubic system Orthogonal non-standard
plane and direction in Reciprocal space
22HW01
C-C
Si cubic orthogonal Find Miller indices in a
possibly non-standard direction Hint check
intercept values versus the value of the lattice
constant a for Si (Sze Appendix G)
23HW01
Find Miller indices in a possibly non-standard
direction Miller indices describe a general
direction k. Miller indices describe a plane
(hkl). The normal to that plane describes the
direction. In an orthogonal system direction
hx ky lz In a non-orthogonal system
direction ha kb lc
24Non-orthogonal, non-standard directions in
Reciprocal space
P. 10 for a given set of direct primitive cell
basis vectors, a set of reciprocal k-space
lattice vectors a, b, c are defined
P. 11 the general reciprocal lattice vector is
defined G ha kb lc
25For 1.5(a)
26Direct space (lattice)
Direct space (lattice)
Reciprocal space (lattice)
Conventional cubic Unit cell
Primitive cell for fcc, diamond, zinc-blende,
and rock salt
Reciprocal space first Brillouin zone for fcc,
diamond, zinc-blende, and rock salt
27For 1.5(b) Find the volume of k-space
corresponding to the reciprocal space vectors a,
b and c
28(No Transcript)
29Note pick up factors of (2p)3
1 a. b x c
1 primitive cell volume Sze Vc Vcrystal
30HW01
31Given direct space basis vectors a, b, and c for
bcc. Find reciprocal space basis vectors a, b,
and c for bcc Compare the result to direct space
a, b, and c for fcc
32(No Transcript)