Title: Discrete Fourier Transform
1Discrete Fourier Transform
2Multiply element-by-element
3Cumulative sum shows
42 signals of same frequency and phase
5Multiply element-by-element
6Non-zero cumulative sum
7Same frequency but ?/2 phase difference
8Element-by element product with both sine and
cosine waves
9Cumulative sums
10Wave partly sine, partly cosine
11Element-by-element multiplication
12Cumulative sum
13dftsimp2demo(f, fs, timelen, amp) dftsimp2demo(200
, 1000, 0.02, 1)
14dftsimp2demo(f, fs, timelen, amp) dftsimp2demo(200
, 1000, 0.05, 1)
15dftsimp2demo(f, fs, timelen, amp) dftsimp2demo(200
, 10000, 0.05, 1)
16dftcomplex2demo(f1, f2, fs, timelen, a1,
a2) dftcomplex2demo(200, 400, 10000, 0.02, 5, 4)
17dftcomplex2demo(f1, f2, fs, timelen, a1,
a2) dftcomplex2demo(200, 400, 10000, 0.02, 5, 4)
18dftspeech2demo(wavfile, timelen) dftspeech2demo('a
test.wav', 0.04)
19dftspeech2demo(wavfile, timelen) dftspeech2demo('a
test.wav', 0.04)
20Use dB scale and frequencies to Fs /2
21dftspeech2demo(wavfile, timelen) dftspeech2demo(i
test.wav', 0.04)
22dftspeech2demo(wavfile, timelen) dftspeech2demo(i
test.wav', 0.04)
23DFT Procedure
- Given the window (frame) length, decide the base
frequency - Multiply by sine wave at each multiple of base
frequency - Multiply by cosine wave at each multiple of base
frequency - Calculate magnitude and phase spectra using
24Complex Exponential
- Given the window (frame) length, decide the base
frequency - Multiply by sine wave at each multiple of base
frequency - Multiply by cosine wave at each multiple of base
frequency - Calculate magnitude and phase spectra using
25Compact Formulae