Title: Universal Weight Function
1Universal Weight Function
Plan
- Nested (off-shell) Bethe vectors
- Borel subalgebras in the quantum affine algebras
- Projections and an Universal weight function
2Algebraic Bethe Ansatz (
Part I Weight functions and the Hierarchical
Bethe ansatz
case)
3The Hierarchical Bethe Ansatz
(short review)
4(No Transcript)
5(No Transcript)
6Weight function as specific element of monodromy
matrix ( case)
A.Varchenko, V.Tarasov. Jackson integrals for the
solutions to Knizhnik-Zamolodchikov equation,
Algebra and Analysis 2 (1995) no.2, 275-313
7(No Transcript)
8Weight function
Let be -module. A vector
is called a weight singular vector with respect
to the action of if for
and If
we call
a vector-valued weight function of the weight
associated with the vector
Let be the set of indices of
the simple roots for the Lie
algebra A -multiset is a collection of
indexes together with a map
, where and
We associate a formal variable to the index
9(No Transcript)
10We call the element
the
Universal Weight Function
11Part II Universal weight function and
Drinfelds current
Different realizations of the QAA
12(No Transcript)
13(No Transcript)
14Orthogonal decompositions of Hopf algebras
15Projections and the weight function
16Coproduct property of the weight
function
17(No Transcript)
18Ding-Frenkel isomorphism
J. Ding, I. Frenkel. Isomorphism of two
realizations of quantum
affine algebra Comm.Math. Phys.
156 (1993) 277-300
19Composed currents and projections
20Calculation of the projections
21The element for a collection of times
satisfies