Electronic%20(UV-visible)%20Spectroscopy - PowerPoint PPT Presentation

About This Presentation
Title:

Electronic%20(UV-visible)%20Spectroscopy

Description:

Title: PowerPoint Presentation Last modified by: a Created Date: 1/1/1601 12:00:00 AM Document presentation format: Other titles: Times New Roman ... – PowerPoint PPT presentation

Number of Views:297
Avg rating:3.0/5.0
Slides: 36
Provided by: chemCcuE8
Category:

less

Transcript and Presenter's Notes

Title: Electronic%20(UV-visible)%20Spectroscopy


1
Electronic (UV-visible) Spectroscopy
Electronic XPS UPS
UV-visible
2
UV-visible spectroscopy ligand p (1)
metal-metal (d-d) transition s metal-ligand
metal d (2) charge transfer (MLCT) ligand-met
al n (LMCT) metal d n (3) ligand-centered
transition ligand p   s instrument  
sample
energy energy
energy output source selector
analyzer    
computer electric
connection light path absorbance
Io A log ?? ecl
I   e extinction coefficient
c concentration mol/L (M) l path
length (cm)
3
  • selection rules
  • 1. only one electron is involved in any
    transition
  • 2. there must be no net change of spin DS 0
  • 3. it must involve an overall change in orbital
  • angular momentum of one unit DL 1
  • 4. Laporte (or parity) selection rule
  • only g ?u and u ?g transitions are allowed
  • vibronic coupling interaction between
    electronic
  • and vibrational
    modes
  • electronic transition e
  • Laporte allowed (charge transfer) 10000
  • (100050000)

4
CoCl42-
  • Co(H2O)62

Mn(H2O)62
5
  • d-d transition crystal field splitting
  • Do size and charge of the metal ion and
    ligands
  • 4d metal 50 larger than 3d metal
  • 5d metal 25 larger than 4d metal
  • 5d gt 4d gt 3d
  • crystal field stabilization energy (CFSE)
  • spin-pairing energy
  •  
  • high-spin/low spin configuration d4 d7
  • d4

6
  • other shapes
  • tetrahedral
  •  

  • Dt 4/9 Do
  •  
  •  

tetrahedron octahedron elongated
square
octahedron planar
7
  • d1
    Ti(H2O)63
  •  
  •   
  •  
  •  
  •  
  •  
  •  
  •  
  •  hole formalism
  •   
  •  
  •  
  •  
  •   d2
    possible electron
  • possible arrangements of electrons transitions
  •  

hu Do
8
  • Russell-Saunders term symbols
  • for free atoms and ions
  • S total spin quantum number Sms
  • L total orbital angular quantum number Sml
  • L 0, 1, 2, 3, 4, ..
  • S P D F G
  • 1 3 5 7 9
  • J total angular quantum number LS, ,L-S
  •  
  • d2 configuration 10!
  • 45
    microstates
  • 8! 2!
  • S 1 0 -1
  • L
  • 4 (2 2-)
  • 3 (2 1) (2 1-) (2- 1) (2- 1-)

2S1LJ
9
  • splitting of terms in various chemical
    environments
  • d orbitals in Oh environment
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •   consider pure rotational O subgroup

states for dn systems in Russell-Saunders coupling
10
  • transformation matrix
  •   e2ia 0 0 0 0
  • 0 eia 0 0 0
  • 0 0 e0 0 0
  • 0 0 0 e-ia 0
  • 0 0 0 0 e-2ia
  • sum of the diagonal elements
  • sin(l 1/2)a
  • c (a)
  • sin(a/2)
  • for d orbitals

  • sin(5p/2)
  • c (E) 5 c (C2)
    1

  • sin(p/2)
  •  
  • sin(5p/3)
    sin(5p/4)
  • c (C3) -1 c (C4) -1
  • sin(p/3)
    sin(p/4)

11
  • splitting of one-electron levels in an Oh
    environment

splitting of one-electron levels in various
symmetries
12
  • determine the spin multiplicity of each term
  • d2 configuration in Oh environment
  • (i) t2g2 aA1g bEg cT1g dT2g
  • total degeneracy 15
  • a b c d
  • I 1 1 1 3
  • II 1 1 3 1
  • III 3 3 1 1
  •  
  • (ii) t2g1eg1 aT1g bT2g
  • total degeneracy 24
  • only possibility 1T1g 1T2g 3T1g 3T2g
  •  
  • (iii) eg2 aA1g bA2g cEg
  • total degeneracy 6
  • a b c
  • I 1 3 1
  • II 3 1 1
  •  

13
  • method of descending symmetry
  • consider d2 ion in Oh environment
  • from correlation table for group Oh
  •  
  •  
  •  
  •  
  •  
  •  
  • (i) t2g2 A1g Eg T1g T2g
  • lowering the symmetry to C2h t2g
    ag ag bg
  • t2g t2g 1A1g 1Eg
    3T1g 1T2g
  • possible spin 1 1 1
    3
  • multiplicity 1 1 3
    1 ?
  • 3 3 1 1
  • corresponding 1Ag 1Ag 3Ag
    1Ag
  • representations 1Bg 3Bg 1Ag
  • in C2h 3Bg 1Bg

14
  • (ii) eg2 A1g A2g Eg
  • lowering the symmetry to D4h eg a1g
    b1g
  • a1g2 A1g possible spin
    multiplicity 1A1g
  • a1gb1g B1g possible spin
    multiplicity 1B1g 3B1g
  • b1g2 A1g possible spin
    multiplicity 1A1g
  • gt D4h Oh
  • 1A1g 1A1g
  • 3B2g 3A1g
  • 1A1g 1B1g 1Eg
  •  
  • (iii) t2g1eg1 ????
  • consider d2 ion in Td environment
  • from splitting of energy level in Td symmetry
  • 3F 3A2 3T1 3T2
  • 1D 1E 1T2
  • 3P 3T1
  • 1G 1A1 1E 1T1 1T2
  • 1S 1A1

15
  • splitting of the terms for d2 ion in several
    point groups

16
  • correlation diagram for a d2 ion in Oh environment

17
  • correlation diagram for a d2 ion in Td
  • environment

18
  • Orgel diagrams
  • d1, d6/d4, d9
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •   u 10 Dq

d1, d6 tetrahedral d1, d6 octahedral d4, d9
octahedral d4, d9 tetrahedral
19
  • d2, d7/d3, d8
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  • A2?T2 u1 10Dq T1?T2 u1 8Dq
    c
  • A2?T1(F) u2 18Dq - c T1(F)?T1(P) u2 18Dq c

cm-1
d2, d7 tetrahedral Dq d2, d7
octahedral d3, d8 octahedral d3, d8 tetrahedral
20
(No Transcript)
21
  • Tanabe-Sugano diagrams

22
(No Transcript)
23
  • simplified Tanabe-Sugano diagrams

d2
d3
d4
d5
d6
d7
d8
24
  • magnitude of Do
  • Mn(II) lt Ni(II) ltCo(II) lt Fe(II) lt V(II) lt
    Fe(III)
  • lt Cr(III) lt V(III) lt Co(III) lt Mn(IV) lt Mo(III)
  • lt Rh(III) lt Pd(IV) lt Ir(III) lt Re(IV) lt Pt(IV)
  •  
  • Do values for octahedral M(H2O)6n complexes
  • Do (cm-1)
  • Ti3 20400 Mn3 21000 Co3 19000
  • V3 19000 Mn2 7500 Co2 9750
  • Cr3 17700 Fe3 21000 Ni2 8500
  • Cr2 12500 Fe2 10500 Cu2 12600
  • spectrochemical series
  • I- lt Br- lt -SCN- lt Cl- lt F- lt urea lt OH- lt
    CH3COO-
  • lt C2O4- lt H2O lt -NCS- lt glycine lt pyridine NH3
  • lt en lt SO32- lt o-phenanthroline lt NO2- lt CN- lt
    PR3
  • lt CO
  • ex. Co(H2O)63 Do 19000
    cm-1

25
  • Jørgensen prediction of 10Dq and B
  • 10Dq f g (cm-1 10-3)
  • B Bo (1 - h k)
  • Bo free ion interelectronic repulsion
    parameter
  •  
  • Jahn-Teller distortions
  • distortion will occur whenever the resulting
    splitting
  • energy levels yields additional stabilization
  • __ dx2-y2 __ dz2
  • eg __ __

26
  • M(H2O)6n

Ti3 (d1)
Mn2 (d5)
V3 (d2)
Fe2 (d6)
Co2 (d7)
Cr3 (d3)
Ni2 (d8)
Cu2 (d9)
Cr2 (d4)
27
  • d1
  •  
  •  
  •  
  •   
  •  
  •  
  •  
  •  
  •  
  •   
  • d2
  •  
  •  

28
  • d3

29
  • d3


30
  • d4
  • d5

31
  • d6

32
  • d6

33
  • d6

34
  • d7

35
  • d8
  •   
  •  
  •  
  •  
  •  
  •  
  •  
  • d9
Write a Comment
User Comments (0)
About PowerShow.com