Title: Electronic%20(UV-visible)%20Spectroscopy
1Electronic (UV-visible) Spectroscopy
Electronic XPS UPS
UV-visible
2UV-visible spectroscopy ligand p (1)
metal-metal (d-d) transition s metal-ligand
metal d (2) charge transfer (MLCT) ligand-met
al n (LMCT) metal d n (3) ligand-centered
transition ligand p  s instrument Â
sample
energy energy
energy output source selector
analyzer  Â
computer electric
connection light path absorbance
Io A log ?? ecl
I Â e extinction coefficient
c concentration mol/L (M) l path
length (cm)
3- selection rules
- 1. only one electron is involved in any
transition - 2. there must be no net change of spin DS 0
- 3. it must involve an overall change in orbital
- angular momentum of one unit DL 1
- 4. Laporte (or parity) selection rule
- only g ?u and u ?g transitions are allowed
- vibronic coupling interaction between
electronic - and vibrational
modes - electronic transition e
- Laporte allowed (charge transfer) 10000
- (100050000)
4CoCl42-
Mn(H2O)62
5- d-d transition crystal field splitting
- Do size and charge of the metal ion and
ligands - 4d metal 50 larger than 3d metal
- 5d metal 25 larger than 4d metal
- 5d gt 4d gt 3d
- crystal field stabilization energy (CFSE)
- spin-pairing energy
- Â
- high-spin/low spin configuration d4 d7
- d4
6- other shapes
- tetrahedral
- Â
-
Dt 4/9 Do - Â
- Â
tetrahedron octahedron elongated
square
octahedron planar
7- d1
Ti(H2O)63 - Â
- Â Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â hole formalism
- Â Â
- Â
- Â
- Â
- Â d2
possible electron - possible arrangements of electrons transitions
- Â
hu Do
8- Russell-Saunders term symbols
- for free atoms and ions
- S total spin quantum number Sms
- L total orbital angular quantum number Sml
- L 0, 1, 2, 3, 4, ..
- S P D F G
- 1 3 5 7 9
- J total angular quantum number LS, ,L-S
- Â
- d2 configuration 10!
- 45
microstates - 8! 2!
- S 1 0 -1
- L
-
- 4 (2 2-)
- 3 (2 1) (2 1-) (2- 1) (2- 1-)
2S1LJ
9- splitting of terms in various chemical
environments - d orbitals in Oh environment
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â consider pure rotational O subgroup
states for dn systems in Russell-Saunders coupling
10- transformation matrix
- Â e2ia 0 0 0 0
- 0 eia 0 0 0
- 0 0 e0 0 0
- 0 0 0 e-ia 0
- 0 0 0 0 e-2ia
- sum of the diagonal elements
- sin(l 1/2)a
- c (a)
- sin(a/2)
- for d orbitals
-
sin(5p/2) - c (E) 5 c (C2)
1 -
sin(p/2) - Â
- sin(5p/3)
sin(5p/4) - c (C3) -1 c (C4) -1
- sin(p/3)
sin(p/4)
11- splitting of one-electron levels in an Oh
environment
splitting of one-electron levels in various
symmetries
12- determine the spin multiplicity of each term
- d2 configuration in Oh environment
- (i) t2g2 aA1g bEg cT1g dT2g
- total degeneracy 15
- a b c d
- I 1 1 1 3
- II 1 1 3 1
- III 3 3 1 1
- Â
- (ii) t2g1eg1 aT1g bT2g
- total degeneracy 24
- only possibility 1T1g 1T2g 3T1g 3T2g
- Â
- (iii) eg2 aA1g bA2g cEg
- total degeneracy 6
- a b c
- I 1 3 1
- II 3 1 1
- Â
13- method of descending symmetry
- consider d2 ion in Oh environment
- from correlation table for group Oh
- Â
- Â
- Â
- Â
- Â
-
- Â
- (i) t2g2 A1g Eg T1g T2g
- lowering the symmetry to C2h t2g
ag ag bg - t2g t2g 1A1g 1Eg
3T1g 1T2g - possible spin 1 1 1
3 - multiplicity 1 1 3
1 ? - 3 3 1 1
- corresponding 1Ag 1Ag 3Ag
1Ag - representations 1Bg 3Bg 1Ag
- in C2h 3Bg 1Bg
14- (ii) eg2 A1g A2g Eg
- lowering the symmetry to D4h eg a1g
b1g - a1g2 A1g possible spin
multiplicity 1A1g - a1gb1g B1g possible spin
multiplicity 1B1g 3B1g - b1g2 A1g possible spin
multiplicity 1A1g - gt D4h Oh
- 1A1g 1A1g
- 3B2g 3A1g
- 1A1g 1B1g 1Eg
- Â
- (iii) t2g1eg1 ????
- consider d2 ion in Td environment
- from splitting of energy level in Td symmetry
- 3F 3A2 3T1 3T2
- 1D 1E 1T2
- 3P 3T1
- 1G 1A1 1E 1T1 1T2
- 1S 1A1
15- splitting of the terms for d2 ion in several
point groups
16- correlation diagram for a d2 ion in Oh environment
17- correlation diagram for a d2 ion in Td
- environment
18- Orgel diagrams
- d1, d6/d4, d9
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â u 10 Dq
d1, d6 tetrahedral d1, d6 octahedral d4, d9
octahedral d4, d9 tetrahedral
19- d2, d7/d3, d8
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- Â
- A2?T2 u1 10Dq T1?T2 u1 8Dq
c - A2?T1(F) u2 18Dq - c T1(F)?T1(P) u2 18Dq c
cm-1
d2, d7 tetrahedral Dq d2, d7
octahedral d3, d8 octahedral d3, d8 tetrahedral
20(No Transcript)
21 22(No Transcript)
23- simplified Tanabe-Sugano diagrams
d2
d3
d4
d5
d6
d7
d8
24- magnitude of Do
- Mn(II) lt Ni(II) ltCo(II) lt Fe(II) lt V(II) lt
Fe(III) - lt Cr(III) lt V(III) lt Co(III) lt Mn(IV) lt Mo(III)
- lt Rh(III) lt Pd(IV) lt Ir(III) lt Re(IV) lt Pt(IV)
- Â
- Do values for octahedral M(H2O)6n complexes
- Do (cm-1)
- Ti3 20400 Mn3 21000 Co3 19000
- V3 19000 Mn2 7500 Co2 9750
- Cr3 17700 Fe3 21000 Ni2 8500
- Cr2 12500 Fe2 10500 Cu2 12600
- spectrochemical series
- I- lt Br- lt -SCN- lt Cl- lt F- lt urea lt OH- lt
CH3COO- - lt C2O4- lt H2O lt -NCS- lt glycine lt pyridine NH3
- lt en lt SO32- lt o-phenanthroline lt NO2- lt CN- lt
PR3 - lt CO
- ex. Co(H2O)63 Do 19000
cm-1
25- Jørgensen prediction of 10Dq and B
- 10Dq f g (cm-1 10-3)
- B Bo (1 - h k)
- Bo free ion interelectronic repulsion
parameter - Â
- Jahn-Teller distortions
- distortion will occur whenever the resulting
splitting - energy levels yields additional stabilization
- __ dx2-y2 __ dz2
- eg __ __
26Ti3 (d1)
Mn2 (d5)
V3 (d2)
Fe2 (d6)
Co2 (d7)
Cr3 (d3)
Ni2 (d8)
Cu2 (d9)
Cr2 (d4)
27- d1
- Â
- Â
- Â
- Â Â
- Â
- Â
- Â
- Â
- Â
- Â Â
- d2
- Â
- Â
28 29 30 31 32 33 34 35