Title: Causal inference in cue combination
1Causal inference in cue combination
Konrad Kording www.koerding.com
2Modeling Where do cues come from?
Generate
3Traditional Bayesian model
Infer
Alais Burr 04, Battaglia et al 03, Knill
Pouget 04, Ernst Banks 02, Gahramani 95, van
Beers et al, etc
4Visual Auditory combination (Ventriloquist effect)
Both cues
5What would happen now?
6Do we believe this kind of model?
Assumes there is one and only one cause!
7Alternative model
or
Kording, Beierholm, Ma, Quartz, Tenenbaum, Shams,
2007
8Calculate probability of model
9Independent causes where is the auditory
stimulus
Audio Visual
Best estimate
10Common cause where is the auditory stimulus
Audio Visual Combined
Best estimate
11Mean squared error estimate
Audio Visual Combine
Best estimate
Remark Knill uses virtually identical math
12Experimental test
Button common cause or two
Wallace et al 2005 Hairston et al 2004
13Measured gain
Data
Kording et al
Sato et al, in press
Wallace et al 2005 Hairston et al 2004
14How can the gain be negative?
15Predicting the variance
Worse prediction if we assume model selection
16Take home message
- Uncertainty about causal structure
- Bayesian framework is modular
- Easy to extend
- Causality problems occur in many domains
17Acknowledgements
- Ulrik Beierholm
- Wei Ji Ma
- Steven Quartz
- Joshua Tenenbaum
- Ladan Shams
- Kunlin Wei