Title: Metaheuristics Network
1- Metaheuristics Network
- Activities EuroBios
Thomas Bousonville EuroBios
2Overview
- Consumer Packed Goods Example
- Routing in Real Streetnetworks
- Experiment analysis environment
3Two-Stage Flow Shop
Demand
Mixers
Packing Lines
Intermediate Storage
Supply,
Supply,
Demand
Demand
Early
Delivery
Connectivity
Finished Good
Connectivity
Storage
of
PLs,
size
,
size
,
type,
capacity
Raw
Distribution
materials
Networks
4Two-Stage Flow Shop
- Constraints
- Run-rates
- Capacities
- Changeover
- Connectivity
- Precedence
- Maintenance
- Objective
- Minimizing makespan
5Two-Stage Flow Shop
- Linear programming appoaches
- Example (Jain and Grossmann 2000)
- Each product has a dedicated machine
- A tank can be connected to only one make and one
pack machine at a time - The size of an order does never exceed the tank
capacity
- Solution
- Using a commercial MILP solver problems up to 15
jobs could be solved to optimality
6Two-Stage Flow Shop
More formal problem description K1 machines make
stage K2 machines pack stage J jobs di duration
job i vi variant of job i im, ip make and pack
tasks of a job skij changeover times between the
jobs i, j on machine k operations of make task
of job i,
7Two-Stage Flow Shop
operations of make task of job i, start time
of operation duration of operation Objective
8Representation
- Direct representation is difficult because of
- Constraints
- Continuous nature of the decision variables
- Alternative
9Scheduler
10Scheduler
SP(j) schedules the maximal amount of job j on a
given resource combination (make, pack, tank)
without interruption this may lead to a
division of a job in different numbers of
operations in different schedules generally the
number of decision points during the algorithm is
not known in advance
11Representations
But if rki rli for all machines k,l of the
same stage any given job i tc is identical for
all tanks the number of generated operations
per jobs is invariant for all possible schedules
generated by the presented scheduler the
solution can also be represented by a fixed
length string of operations
12Local search
- No local evaluation of a neighbor solution
possible -
- After every local move the new solution has to
reevaluated (beginning with the involved oper.) - Only small (maximum quadratic) neighborhoods are
useful for computational reasons
- Transpose neighborhood (linear)
- Insert neighborhood (quadratic)
- Block insert neighborhood (cubic)
13GA framework
- Operators
- Crossover OX operator
- Mutation two or four position exchanges
- Population management
- Stochastic universal sampling
- Constant population size
- all offspring are kept for the next generation
and replace the worst individuals in the parent
population
14Computational experiments
- Test problem
- 57 products, 20 variants
- 3 make lines, 7 pack lines, 5 tanks
- Genotype space size
- 476 (job rep.) vs. 2111 (operations rep.)
- Time limit
- 1000 seconds
15Computational experiments
16Computational experiments
17Computational experiments
18Conclusions - CPG
- Presentation of a real world problem from
consumer packed goods - Possible representations in combination with a
scheduler - The performance of different local search
procedures and the combination within a Memetic
Algorithm are compared - Outlook broader evaluation by using further
instances
19Routing in Garbage Collection
20Distribution of garbage
21Partition in districts
22Routing
Problem Determine the order in which to service
the street segmenst ... minimizing the total
length
- Take into account
- One way roads
- Turn restrictions
- Waiting times at crossings
23Model
Basemodel Mixed Rural Postman Problem on G
G(N,E,A,S,c,d) having c E?A ? ?, d S ? ?,
S ? (E ?A)
Extension Turn restrictions Tupel
with (j1, i1, j2), j1,j2?1,..,EA,
i1?1,..,N t T ? ?, T ? ( (E ?A) ? N ? (E ?A)
)
Mixed Rural Postman Problem with Turn penalties
MRPPTP
24Representation
- Reconstruction of a tour from the genotype
- Connect si and si1 with their shortest path
- Unique mapping
- Every edge has to have a logical direction (si,
di) - Shortest paths
- Turn restrictions andcosts are included
25Crossover Operator OX (Davis)
- Parents p1 ( 1 2 3 4 5 6 7 8 9 )
- p2 ( 4 5 2 1 8 7 6 9 3 )
- produce offsprings
- o1 ( x x x 4 5 6 7 x x )
- o2 ( x x x 1 8 7 6 x x )
- by trying to preserve the ordering of one parent
- o1 ( 2 1 8 4 5 6 7 9 3 )
- o2 ( 3 4 5 1 8 7 6 9 2 )
26Population management
r chromosomes are chosen for reproduction Stochas
tic Universal Sampling (Baker) Parents for
crossover or mutation are selected with a
probalility according to their relative
fitness popsize-r chromosomes are chosen to stay
unchanged
New population of popsize chromosomes
27Local Search
2-Opt 3-Opt
28Local Search
2-Opt 3-Opt
29Mutation
viewed as a local move
30Configuration
31Validation
- Testdata
- taken from literature (Corberan et al. (2001))
- 63 problems with sizes between 80 and 520 service
edges - Reference algorithm
- TabuSearch-Algorithm (Corberan 2001)
- Exact procedure for ATSP (only applicable for
small instances) - Experiments
- 6 runs in toal, 3 runs with 20 and 50 Individals
respectively.
32Results
- For 24 instances the optimum is known
- EA reaches the optimum in 15 cases
- For the other cases max. 0,3 deviation
- For 53 out of 63 the EA performs better than the
tabu search - In average about 1 better solution quality
- but long running times
33GA Candidate list length
34GA vs.TabuSearch
35Experiment Analysis Environment
- Based on a database
- Graphical user interface
- Experiment organization
- Analysis definition
36DD-Example