Title: Nondeviant logics of relative identity
1Non-deviant logics of relative identity
2Non-deviant logics of relative identity
3Non-deviant logics of relative identity
4Non-deviant logics of relative identity
5Non-deviant logics of relative identity
6Non-deviant logics of relative identity
7Non-deviant logics of relative identity
8Non-deviant logics of relative identity
9Non-deviant logics of relative identity
- (F3) (i) ?C2 ?x1(A(x1) ? B(x1)) ? (x1A x2 ? x1B
x2). - (ii) ?C3 ?x1(A(x1)?B(x1)) ? (x1A x2 ? x2B x3
? x1B x3). - (iii) ?C4 ?x1(A(x1)?B(x1)) ? (x1A x2 ? x2B x3
? x1A x3). - (iv) ?C5 ?x1(A(x1)?B(x1)) ? (x1A x2 ? x2B x3
? - x1A x3 ? x1B x3 ).
- (v) ?C6 x1A x2 ? x2B x3 ? x1Ax3 ? x1B x3.
- (vi) ?C7 x1A x2 ? B(x1) ? B(x2).
- (vii) ?C8 x1A x2 ? B(x1) ? B(x2) ? x1B x2 .
- (viii) ?C9 x1A x2 ? B(x1) ? x1B x2 .
10Deviant logics of relative identity
- (C10) If X?F(?), then ?u??F(?) Xu.
- (C11) ?F(?)?F(?).
11Monadic logics of relative identity
- C1
- C2
- C3 C4
- C5 C6 C7 C8
- C9
- C11 C10
12Sequent calculi of relative identity
- (D8) A sequent ? ? is derivable in a sequent
calculus SQR1, R2, , Rn iff there exists a
finite sequence of sequents ?1 ?1, ?2 ?2, , ?n
?n such that - (i) ?n? and ?n?,
- (ii) every element ?i ?i in that sequence
either is the conclusion of some non-premise
rule from SQ or there is a rule in SQ such that
?i ?i is its conclusion and its premises are
among precedent sequents in the sequence.
13Sequent calculi of relative identity
- (D9) A formula ? is derivable in SQ from a set ?
of formulas, ??SQ?, iff there is a finite
number of formulas ?1, ?2, , ?n in ? such that
?SQ ?1?2 ?n ?.
14Calculi of relative identity
- (R11A) ? ?1?2
- ? ?(?1)
- ---------------------------
- ? ?1??2
- (R11B) ? ?1??2
- ---------------------------
- ? ?(?1)
- (R11C) ? ?1??2
- ---------------------------
- ? ?2??1
- (R11D) ? ?1??2
- ? ?2??3
- ---------------------------
- ? ?1??3