Nondeviant logics of relative identity - PowerPoint PPT Presentation

1 / 14
About This Presentation
Title:

Nondeviant logics of relative identity

Description:

Harry Deutsch. Minimal theory of relative identity. Language. Semantics ... Harry Deutsch. If = and '( ), then '( ). x1=dAx2 (A(x1) A(x2) ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 15
Provided by: garb4
Category:

less

Transcript and Presenter's Notes

Title: Nondeviant logics of relative identity


1
Non-deviant logics of relative identity
2
Non-deviant logics of relative identity
3
Non-deviant logics of relative identity
4
Non-deviant logics of relative identity
5
Non-deviant logics of relative identity
6
Non-deviant logics of relative identity
7
Non-deviant logics of relative identity
8
Non-deviant logics of relative identity
9
Non-deviant logics of relative identity
  • (F3) (i) ?C2 ?x1(A(x1) ? B(x1)) ? (x1A x2 ? x1B
    x2).
  • (ii) ?C3 ?x1(A(x1)?B(x1)) ? (x1A x2 ? x2B x3
    ? x1B x3).
  • (iii) ?C4 ?x1(A(x1)?B(x1)) ? (x1A x2 ? x2B x3
    ? x1A x3).
  • (iv) ?C5 ?x1(A(x1)?B(x1)) ? (x1A x2 ? x2B x3
    ?
  • x1A x3 ? x1B x3 ).
  • (v) ?C6 x1A x2 ? x2B x3 ? x1Ax3 ? x1B x3.
  • (vi) ?C7 x1A x2 ? B(x1) ? B(x2).
  • (vii) ?C8 x1A x2 ? B(x1) ? B(x2) ? x1B x2 .
  • (viii) ?C9 x1A x2 ? B(x1) ? x1B x2 .

10
Deviant logics of relative identity
  • (C10) If X?F(?), then ?u??F(?) Xu.
  • (C11) ?F(?)?F(?).

11
Monadic logics of relative identity
  • C1
  • C2
  • C3 C4
  • C5 C6 C7 C8
  • C9
  • C11 C10

12
Sequent calculi of relative identity
  • (D8) A sequent ? ? is derivable in a sequent
    calculus SQR1, R2, , Rn iff there exists a
    finite sequence of sequents ?1 ?1, ?2 ?2, , ?n
    ?n such that
  • (i) ?n? and ?n?,
  • (ii) every element ?i ?i in that sequence
    either is the conclusion of some non-premise
    rule from SQ or there is a rule in SQ such that
    ?i ?i is its conclusion and its premises are
    among precedent sequents in the sequence.

13
Sequent calculi of relative identity
  • (D9) A formula ? is derivable in SQ from a set ?
    of formulas, ??SQ?, iff there is a finite
    number of formulas ?1, ?2, , ?n in ? such that
    ?SQ ?1?2 ?n ?.

14
Calculi of relative identity
  • (R11A) ? ?1?2
  • ? ?(?1)
  • ---------------------------
  • ? ?1??2
  • (R11B) ? ?1??2
  • ---------------------------
  • ? ?(?1)
  • (R11C) ? ?1??2
  • ---------------------------
  • ? ?2??1
  • (R11D) ? ?1??2
  • ? ?2??3
  • ---------------------------
  • ? ?1??3
Write a Comment
User Comments (0)
About PowerShow.com