Title: Phases
1 2??????? Phases
- Thermodynamic, Equilibrium
- Statistical ensemble
- Observation space
- Information entropy
- Gibbs Equilibria
- Example Mean-field
- Discussion
- What is temperature?
- What is equilibrium?
- Ensemble inequivalence
- Time dependent equilibria
- Nuclear matter
- Isospin dependent EOS
- Phase transition
- Spinodal decomposition
- Neutron Supernovae
- Phase transi. finite system
- Zero of partition sum
- Bimodalities
Philippe CHOMAZ - GANIL
1
3 4Absolute necessity of the second principle
R. Balian Statistical mechanics
52
5Absolute necessity of the second principle
R. Balian Statistical mechanics
- First principle energy conservation
- Time independent laws (symmetry) gt E conserved
- Classical
-
-
- Point in phase space
- Quantum
-
- Vector of Hilbert space
?(q)??q??
q
52
6Absolute necessity of the second principle
R. Balian Statistical mechanics
- First principle energy conservation
- Time independent laws (symmetry) gt E conserved
- Classical
-
-
- Point in phase space
- Quantum
-
- Vector of Hilbert space
?(q)??q??
t0
q
t0
t0
t0
52
7Absolute necessity of the second principle
R. Balian Statistical mechanics
- First principle energy conservation
- Time independent laws (symmetry) gt E conserved
- Classical
-
-
- Point in phase space
- Quantum
-
- Vector of Hilbert space
?(q)??q??
t0
q
t0
t0
t0
52
8Absolute necessity of the second principle
R. Balian Statistical mechanics
- Initial condition gt infinite information needed
- Infinite accuracy needed (Chaos)
- Classical
- 6.N coordinates
-
- Point in phase space
- Quantum
- 2.8 coordinates
- Vector of Hilbert space
?(q)??q??
q
52
9Absolute necessity of the second principle
R. Balian Statistical mechanics
- Initial condition gt infinite information needed
- Infinite accuracy needed (Chaos)
- Classical
- 6.N coordinates
-
- Point in phase space
- Quantum
- 2.8 coordinates
- Vector of Hilbert space
- Degree of freedom gt infinite information needed
- Our ignorance of initial comdition should be
taken into account to make the theory meaningful
52
10Classical Chaos lt Quantum 8 D. freedom
- Classical
- 6.N coordinates
-
- Chaos
- Quantum
- 2.8 coordinates
- Projection
ltpgt
ltqgt
ltp2gt
ltqpgt
ltq2gt
-
- Our ignorance of initial comdition should be
taken into account to make the theory meaningful
52
11 12ThermodynamicsInformation theoryStatistical
physics
-I-
2
13 14A-Thermo Statistical ensembles
R. Balian Statistical mechanics
52
15A-Ensembles
R. Balian Statistical mechanics
- Ensemble of events / partitions / replicas
- State
- Classical
- Point in phase space
- Ensemble statesoccurrence probability
- gt Phase space density
- Quantum
- Vector of Hilbert space
gt Density Matrix
52
16One macroscopic system is an ensemble
- Thermodynamics infinite system
One 8 system ensemble of 8 sub-systems
17A single microscopic system ? ensemble
Cannot be cut in sub-systems
18A single microscopic system ? ensemble
Thermodynamics statistical physics do not apply
to a single realization of a finite system
Cannot be cut in sub-systems
19Thermo describe several realizations
- One small system in time gt statistical ensemble
20Thermo describe several realizations
- One small system in time gt statistical ensemble
Many events
21 22B-Observation space
R. Balian Statistical mechanics
52
23 R. Balian Statistical mechanics
- State
- Classical
- Phase space Density
Quantum Density Matrix
52
24B-Observation space
R. Balian Statistical mechanics
- State
- Classical
- Phase space Density
Quantum Density Matrix
- Observables
- Phase space functions
Operators (Matrices)
52
25 52
26 Geometrical interpretation of observation
- Scalar product in Observable space
-
52
27 Geometrical interpretation of observation
- Scalar product in Observable space
-
HUGE (Infinite) space Classical gt N6 Quantum
gt N8
52
28 29 Basis of operator space (1 particle)
- Spatial
- Hilbert basis gt rgt (or pgt) j(r) ltrjgt
- Operators gt ltrOrgt (or ltpOpgt)
- gt O f(r,p) ?oijklmn xiyjzkplpnpm
8
30 Basis of operator space (1 particle)
- Spatial
- Hilbert basis gt rgt (or pgt) j(r) ltrjgt
- Operators gt ltrOrgt (or ltpOpgt)
- gt O f(r,p) ?oijklmn xiyjzkplpnpm
-
8
31 Basis of operator space (1 particle)
- Spatial
- Hilbert basis gt rgt (or pgt) j(r) ltrjgt
- Operators gt ltrOrgt (or ltpOpgt)
- gt O f(r,p) ?oijklmn xiyjzkplpnpm
- gt Infinite basis
Infinite space
8
32 Require the treatment of our ignorance
- Initial condition cannot be known
- The dynamics cannot be followed
- Impossible to know everything
- Only part of the information is relevant
Infinite space
8
33 34 Basis of operator space (1 particle)
- Spatial
- Hilbert basis gt rgt (or pgt) j(r) ltrjgt
- Operators gt ltrOrgt (or ltpOpgt)
- gt O f(r,p) ?oijklmn xiyjzkplpnpm
- Spin
- Hilbert basis gt gt,-gt c() ltcgt cgt
- Operators gt O o o .s, s (s ,s ,s ) Pauli
matrices
1
3
z
x
y
8
35 Basis of operator space (1 particle)
- Spatial
- Hilbert basis gt rgt (or pgt) f(r) ltrfgt
- Operators gt ltrOrgt (or ltpOpgt)
- gt O f(r,p) ?oijklmn xiyjzkplpnpm
- Spin
- Hilbert basis gt gt,-gt c() ltcgt cgt
- Operators gt O o o .s, s (s ,s ,s ) Pauli
matrices
1
3
z
x
y
8
36 Basis of operator space (1 particle)
- Spatial
- Hilbert basis gt rgt (or pgt) f(r) ltrfgt
- Operators gt ltrOrgt (or ltpOpgt)
- gt O f(r,p) ?oijklmn xiyjzkplpnpm
- Spin
- Hilbert basis gt gt,-gt c() ltcgt cgt
- Operators gt O o o .s, s (s ,s ,s ) Pauli
matrices - Isospin
- Hilbert basis gt ngt,pgt z( ) lt zgt
zgt -
1
3
z
x
y
n
n
p
p
Physics _at_ GANIL, 2005
8
37 Basis of operator space (1 particle)
- Spatial
- Hilbert basis gt rgt (or pgt) f(r) ltrfgt
- Operators gt ltrOrgt (or ltpOpgt)
- gt O f(r,p) ?oijklmn xiyjzkplpnpm
- Spin
- Hilbert basis gt gt,-gt c() ltcgt cgt
- Operators gt O o o .s, s (s ,s ,s ) Pauli
matrices - Isospin
- Hilbert basis gt gt,-gt z() ltzgt zgt
- Operators gt O o o .t, t (t ,t ,t ) Pauli
matrices
s
s
s
1
3
z
x
y
t
t
t
1
3
Z
X
Y
Physics _at_ GANIL, 2005
8
38 39C- Time evolution
R. Balian Statistical mechanics
52
40 R. Balian Statistical mechanics
- State
- Classical
- Phase space Density
Quantum Density Matrix
52
41C- Time evolution
R. Balian Statistical mechanics
- State
- Classical
- Phase space Density
Quantum Density Matrix
Schrödinger
Liouville-von Neumann
52
42C- Time evolution
R. Balian Statistical mechanics
Quantum
Heisenberg (Ehrenfest)
Liouville-von Neumann
52
43 44C- Information and Entropy
R. Balian Statistical mechanics
52
45C- Information and Entropy
R. Balian Statistical mechanics
- Shannon information of probability distribution
p(n)
- Measure the Information
- Max when we know everything
- Min when we know nothing
- Decrease with our ignorance
- Concavity
- Additivity
46 47D- Equilibrium et minimum bias (max S)
R. Balian Statistical mechanics
52
48D- Equilibrium et minimum bias (max S)
R. Balian Statistical mechanics
- Gibbs equilibria are minimum bias distributions
- gt distribution maximizing the entropy
- Example
- Nothing known gt States equiprobable
- gt Microcanonical
49 D- Equilibrium et minimum bias (max S)
R. Balian Statistical mechanics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Variational principle)
Boltzman distribution
Partition sum
Equation of state
52
50Equilibrium ensembles
D- Equilibrium et minimum bias (max S)
R. Balian Statistical mechanics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Minimum information)
Boltzman distribution
Partition sum
Equation of state
52
51B-Thermodynamics
D- Equilibrium et minimum bias (max S)
R. Balian Statistical mechanics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Variational principle)
Boltzman distribution
Partition sum
Equation of state
53
52B-Thermodynamics
D- Equilibrium et minimum bias (max S)
R. Balian Statistical mechanics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Variational principle)
Boltzman distribution
Partition sum
Equation of state
53
53Example mean field
R. Balian Statistical mechanics
- Trial state
- Sc functional of r
- Max constrained S
- gtlike in a mean field
- gtEquilibrium OW
- gtFermi-dirac statistic
- gtMean field entropy
(Independent particles)
(Variational principle)
- Best approximation Sc
- gtBest approximation logZ
54
54 55DiscussionTemperature Equilibra
-II-
2
56 57T
A- What is temperature ?
R. Clausius
58 A- What is temperature ?
- The microcanonical temperature
?S T-1 ?E
S k logW
59 A- What is temperature ?
- It is what thermometers measure.
E Ethermometer Esystem
- The microcanonical temperature
?S T-1 ?E
S k logW
60 A- What is temperature ?
- It is what thermometers measure.
E Ethermometer Esystem
Distribution of microstates
- The microcanonical temperature
?S T-1 ?E
S k logW
61 A- What is temperature ?
- It is what thermometers measure.
E Eth Esys
Distribution of microstates
- The microcanonical temperature
S k logW
?S T-1 ?E
62 A- What is temperature ?
- It is what thermometers measure.
E Eth Esys
Equiprobable microstates
P(Eth) ? Wth (Eth) Wsys(E-Eth)
max P gt ?logWth - ?logWsys 0
max P gt ?Sth - ?Ssys 0
Most probable partition Tth ?sys
- The microcanonical temperature
?S T-1 ?E
S k logW
63 Realisation of a cononical ensemble
- The thermometers is canonically distributed
E Eth Esys
Equiprobable microstates
P(Eth) ? Wth (Eth) Wsys(E-Eth)
Small thermometer (Eth small)
logWsys (E-Eth) logWsys (E)- Eth/T
64 65B- What are the various equilibria?
66B- What are the various equilibria?
R. Balian Statistical mechanics
- Macroscopic
- One realization (event) can be an equilibrium
- One 8 system 8 ensemble of 8 sub-systems
67B- What are the various equilibria?
R. Balian Statistical mechanics
- Macroscopic
- One realization (event) can be an equilibrium
- One 8 system 8 ensemble of 8 sub-systems
- Microscopic
- Ensemble of replicas needed
- One realization (event) cannot be an equilibrium
- Gibbs Equilibrium maximum entropy
- Average over time if ergodic
- Average over events if chaotic/stochastic
- Average over replicas if minimum info
Ergodic some times used instead of uniform
population of phase space
68B- What are the various equilibria?
R. Balian Statistical mechanics
- Ergodic (Bound systems only)
- 8 time average phase space average
- Ergodic gt lt? statistics
- Only conserved quantities (E, J, P )
69Validity conditions
R. Balian Statistical mechanics
70Information theory for finite system
R. Balian Statistical mechanics
71 Many different ensembles
Microcanonical
E
ltEgt
Canonical
V
Isochore
ltr3gt
Isobare
ltQ2gt
Deformed
ltp.rgt
Expanding
ltAgt
Grand
ltLgt
Rotating
...
Others
72C-Finite systems ensemble inequivalence
73C-Finite systems ensemble inequivalence
R. Balian Statistical mechanics
74C-Finite systems ensemble inequivalence
R. Balian Statistical mechanics
75Inequivalence
76C-Finite systems ensemble inequivalence
77 78 79 80 81 82 83A-Statistical ensembles
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Variational principle)
Boltzman distribution
Partition sum
Equation of state
52
84B-Thermodynamics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Minimum information)
Boltzman distribution
Partition sum
Equation of state
52
85B-Thermodynamics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Variational principle)
Boltzman distribution
Partition sum
Equation of state
53
86B-Thermodynamics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Variational principle)
Boltzman distribution
Partition sum
Equation of state
53
87B-Thermodynamics mean field
R. Balian Statistical mechanics
- Trial state
- Sc functional of r
- Max constrained S
- gtlike in a mean field
- gtEquilibrium OW
- gtFermi-dirac statistic
- gtMean field entropy
(Independent particles)
(Variational principle)
- Best approximation Sc
- gtBest approximation logZ
54
88 B-Thermodynamics mean field
- Grand potential
-
- 2 fluids (protons and neutrons)
55
89 B-Thermodynamics mean field
- Grand potential
-
- 2 fluids (protons and neutrons)
- Mean-field approximation
- Fermi
- Skyrme force (SLy4)
-
- density, kinetic density, energy
density - mean field,
effective mass
55
90 B-Thermodynamics mean field
- Grand potential
-
- 2 fluids (protons and neutrons)
- Mean-field approximation
- Fermi
- Skyrme force (SLy4)
-
- density, kinetic density, energy
density - mean field,
effective mass
55
91 B-Thermodynamics mean field
- Grand potential
-
- 2 fluids (protons and neutrons)
Fold
Liquid
Gas
mp
mn
56
92 B-Thermodynamics mean field
- Grand potential
-
- 2 fluids (protons and neutrons)
Fold
Liquid
Gas
mp
mn
Liquid
jump
- Discontinuity in r
-
- First order
- Liquid-gas
rp
Gas
mn
mp
56
93 C-Phase transition
Fold
Liquid
Gas
mp
mn
Liquid
jump
- Discontinuity in r
-
- First order
- Liquid-gas
rp
Gas
mn
mp
56
94 C-Phase transitions
57
95 C-Phase transitions
58
96 C-Phase transitions
Température (Degrés)
Chaleur (Calories par grammes)
58
97 C-Phase transitions
58
98 C-Phase transition
Fold
Liquid
Gas
mp
mn
Liquid
jump
- Discontinuity in r
-
- First order
- Liquid-gas
rp
Gas
mn
mp
58
99Chapitre 2
58
100D-Isospin in coexistence
59
101D-Isospin in coexistence
Neutron density
Liquid
rn
Gas
mn
mp
Proton density
Liquid
rp
Gas
mp
mn
59
102D-Isospin in coexistence distillation
Neutron density
(Except symmetric matter)
Liquid
rn
Gas
mn
Liquid
mp
lt
Proton density
Gas
Liquid
rp
Gas
mp
mn
59
103D-Isospin in coexistence distillation
(Except symmetric matter)
Liquid
Gas
59
104D-Isospin in coexistence distillation
(Except symmetric matter)
Liquid
Liquid symmetric
Gas
Gas asymmetric
59
105D-Isospin in coexistence distillation
Sc Scbmtsr
rp (fm-3)
(Except symmetric matter)
Liquid
Liquid
Gas
Gas
rn (fm-3)
Liquid symmetric
Gas asymmetric
59
106 E-Role of the force
T10 MeV
rp (fm-3)
rn (fm-3)
60
107E-Role of the force
SLy230a
T10 MeV
T10 MeV
rp (fm-3)
rn (fm-3)
60
108E-Role of the force
Strong force dependence
SLy230a
SGII
SIII
T10 MeV
60
109E-Role of the force
Strong force dependence
T10 MeV
60
110E-Role of the force
Strong force dependence
60
111E- Role of the force
Strong force dependence
T10 MeV
X
X
X
X
X
X
X
X
60
112E-Role of the force
Strong force dependence
T10 MeV
60
113E-Role of the force
Strong force dependence
T10 MeV
60
114E-Role of the force
Strong force dependence
T10 MeV
60
115E-Role of the force
Strong force dependence
T10 MeV
60
116E-Role of the force
Strong force dependence
T10 MeV
60
117E-Role of the force
T10 MeV
Strong force dependence
T10 MeV
T10 MeV
SLy230a
SGII
SIII
60
118 119Interactions between nucleonsSymmetriesGeneral
properties
-II-
7
120 121 C) Radial (and momentum) dependences
- Ex Argonne v18
-
- Like a
- Van der Waals
- Long range
- attractif
- Short range
- hard core
Wiringa95
J. Dobaczewski, nucl-th/0301069
14
122 123 124 125 126Ground state propertiesTheoretical
toolsMany-body problem
-III-
16
127 128 129Independent particle motionMean fieldDensity
functional theory
-IV-
21
130 131 132 133 134 29
135??????? Theory
- Complex systems
- NN Interaction
- Symmetries
- Solution of N-Body
- Methodes, variational
- Experimental guides
- Independent particles
- Effective interactions
- Density functional
- Nuclear matter
- Isospin
- T Phase transition
- Compact stars
- Beyond mean-field
- Symmetry breaking
- Collective coordinate
- Time dependence
Philippe CHOMAZ - GANIL
1
136??????? Theory
- Complex systems
- NN Interaction
- Symmetries
- Solution of N-Body
- Methodes, variational
- Experimental guides
- Independent particles
- Effective interactions
- Density functional
- Nuclear matter
- Isospin
- T Phase transition
- Compact stars
- Beyond mean-field
- Symmetry breaking
- Collective coordinate
- Time dependence
Philippe CHOMAZ - GANIL
1
137 138 B) Mean field Slater trial state
- Independent particles
- Each particle in an orbital
- Fermions gt antisymmetrized
- Occupation number
30
139 B) Mean field Slater trial state
- Independent particles
- Each particle in an orbital
- Fermions gt antisymmetrized
- Occupation number
- Second quantization
30
140 B) Mean field Slater trial state
- Independent particles
- Each particle in an orbital
- Fermions gt antisymmetrized
- Occupation number
- Second quantization
- Fock space
- Basis Slaters
- creation operator
30
141 B) Mean field Slater trial state
- Independent particles
- Each particle in an orbital
- Fermions gt antisymmetrized
- Occupation number
- Second quantization
- Fock space
- Basis Slaters
- creation operator
- Basis of operators
30
142 B) Mean field Slater trial state
- Independent particles
- Each particle in an orbital
- Fermions gt antisymmetrized
- Occupation number
- Second quantization
- Fock space
- Basis Slaters
- creation operator
- Basis of operators
30
143 B) Mean field One body density
- Independent particles, Slater trial state
- Each particle in an orbital
- Fermions gt antisymmetrized
- Occupation number
- Second quantization
31
144 B) Mean field One body density
- Independent particles, Slater trial state
- Each particle in an orbital
- Fermions gt antisymmetrized
- Occupation number
- Second quantization
- One body density
- Projector on occupied states
- ltgt Slater
- Result of an observation
- ltgt 1-body operators
31
145 B) Mean field
32
146 B) Mean field Variational principal
- Minimum of ltHgt
- Variation of each orbital
- gt variation of
- Energy (2-body V)
- gt variation of E
- gt mean field
- Min with constraints
- gtHartree-Fock
32
147 B) Mean field Variational principal
- Minimum of ltHgt
- Variation of each orbital
- gt variation of
- Energy (2-body V)
- gt variation of E
- gt mean field
- Min with constraints
- gtHartree-Fock
32
148 B) Mean field Variational principal
- Minimum of ltHgt
- Variation of each orbital
- gt variation of
- Energy (2-body V)
- gt variation of E
- gt mean field
- Min with constraints
- gtHartree-Fock
32
149 B) Mean field Variational principal
32
150 B) Mean field theory
- Ex 2-body force
- Hartree-Fock Eq
- Hartree
- gtlocal
- Fock (exchange)
- gtnon-local
- Divergences if hard core VNN gt Veff
33
151 B) Mean field effective interactions
- Independent particles not valid at short distance
34
152 B) Mean field effective interactions
- Independent particles not valid at short distance
- From V to G
(2-body problem)
- Solution
- gtBethe-Goldstone
- Brueckner
(in medium a,b unoccupied)
34
153 B) Mean field
34
154 C) Mean field Density functional theory
- The only information needed is the energy
- gt functionals of r
- Local density approximation
- Energy density functional
- Local densities
- matter , kinetic , current
- Mean field
35
155 C) Mean field Density functional theory
- The only information needed is the energy
- gt functionals of r
- Local density approximation
- Energy density functional
- Local densities
- matter , kinetic , current
- Mean field
35
156 C) Mean field
32
157 C) Mean field Skyrme case
- Standard case few densities
- Matter isoscalar isovector
- kinetic isoscalar isovector
- Spin isoscalar isovector
- Energy functional
-
36
158 C) Mean field Skyrme case
- Standard case few densities
- Matter isoscalar isovector
- kinetic isoscalar isovector
- Spin isoscalar isovector
- Energy functional
- Mean-field q(n,p)
-
36
159 C) Mean field Skyrme case
- Standard case few densities
- Matter isoscalar isovector
- kinetic isoscalar isovector
- Spin isoscalar isovector
- Energy functional
- Mean-field q(n,p)
-
36
160 C) Mean field Skyrme case
- Standard case few densities
- Matter isoscalar isovector
- kinetic isoscalar isovector
- Spin isoscalar isovector
- Energy functional
- Mean-field q(n,p)
-
36
161 C) Mean field
36
162 D) Mean field Nuclear Matter
- Uniform infinite spin saturated matter
- gt Fermi Sphere
(h3 volume in phase space)
37
163 D) Mean field
SLy230a
- Energy per particle
- Kinetic
- Symmetric matter
- Asymmetry
,
38
164 D) Mean field
SLy230a
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
,
39
165 D) Mean field
SLy230a
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
- Effective mass
,
39
166 D) Mean field constraints on forces
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
- Effective mass
40
167 168Nuclear Matter propertiesIsospin dependence
Temperature dependence
-V-
41
169 41
170 A-Nuclear matter
42
171 A-Nuclear matter
SLy230a
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
42
172 A-Nuclear matter
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
42
173 A-Nuclear matter
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
43
174 A-Nuclear matter
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
Liquid-drop binding -B/AEsEsurfEcoulEsym
44
175 A-Nuclear matter
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
Liquid-drop binding -B/AEsEsurfEcoulEsym Poor
ly known close to drip-lines (low density)
44
176 A-Nuclear matter
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
Poorly known r?rs
45
177 A-Nuclear matter
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
Liquid-drop shape Isospin dependence of
saturation poorly known
Poorly known r?rs
45
178 A-Nuclear matter
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
Poorly known r?rs
46
179 A-Nuclear matter
Monopole vibration
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
Uncertainty Ksym gt K225-270
Poorly known r?rs
46
180 A-Nuclear matter
Monopole vibration
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
Uncertainty Ksym gt K225-270
Poorly known r?rs
46
181 A-Nuclear matter
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
Example Skyrme
Poorly known r?rs
47
182 A-Nuclear matter
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
Density dependence of Esym Poorly known
Poorly known r?rs
48
183 A-Nuclear matter
- Equation of state
- Saturation
-
-
- Compressibility
- Isopin dependence
Density dependence of Esym Poorly known
Poorly known r?rs
49
184 49
185 186 187 188 29
189??????? Theory
- Complex systems
- NN Interaction
- Symmetries
- Solution of N-Body
- Methodes, variational
- Experimental guides
- Independent particles
- Effective interactions
- Density functional
- Nuclear matter
- Isospin
- T Phase transition
- Compact stars
- Beyond mean-field
- Symmetry breaking
- Collective coordinate
- Time dependence
Philippe CHOMAZ - GANIL
1
190??????? Theory
- Complex systems
- NN Interaction
- Symmetries
- Solution of N-Body
- Methodes, variational
- Experimental guides
- Independent particles
- Effective interactions
- Density functional
- Nuclear matter
- Isospin
- T Phase transition
- Compact stars
- Beyond mean-field
- Symmetry breaking
- Collective coordinate
- Time dependence
Philippe CHOMAZ - GANIL
1
191 29
192 B-Phase diagram
193 B-Phase diagram
50
194 B- Phase diagram
- Equation of state
- Saturation
-
-
- Compressibility
-
- Isopin dependence
-
- Density dependence
- Esym poorly known
-
50
195 B- Phase diagram
50
196 B-Phase diagram
- Condensed Fermi fluid
- Liquid-gas phase transition
Phase diagram
50
197Dense matter EOS
Plasma of Quarks and Gluons
20 200 MeV
Critical points (second order)
Temperature
Nucleus
Density r/r0
1 5?
51
198Dense matter EOS
Crab nebula
July 5, 1054
51
199Dense matter EOS
Crab nebula
July 5, 1054
51
200Dense matter EOS
Plasma of Quarks and Gluons
20 200 MeV
Crab nebula
July 5, 1054
Temperature
Density r/r0
1 5?
Nucleus
51
201 Les chemins de la Nucléosynthèse
Super-nova
202 Dense exotic matter in the cosmos Supernovae and
Neutron stars
Les chemins de la Nucléosynthèse
Super-nova
203 Les chemins de la Nucléosynthèse
Super-nova
204 Les chemins de la Nucléosynthèse
Super-nova
205Dense matter EOS
Plasma of Quarks and Gluons
20 200 MeV
Crab nebula
July 5, 1054
Temperature
Density r/r0
1 5?
Nucleus
51
206B-Thermodynamics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Variational principle)
Boltzman distribution
Partition sum
Equation of state
52
207B-Thermodynamics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Variational principle)
Boltzman distribution
Partition sum
Equation of state
52
208B-Thermodynamics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Variational principle)
Boltzman distribution
Partition sum
Equation of state
53
209B-Thermodynamics
R. Balian Statistical mechanics
- Statistical ensemble
- Equilibrium Max S
- Constraints (ltHgt, ltNgt)
(Variational principle)
Boltzman distribution
Partition sum
Equation of state
53
210B-Thermodynamics mean field
R. Balian Statistical mechanics
- Trial state
- Sc functional of r
- Max constrained S
- gtlike in a mean field
- gtEquilibrium OW
- gtFermi-dirac statistic
- gtMean field entropy
(Independent particles)
(Variational principle)
- Best approximation Sc
- gtBest approximation logZ
54
211 B-Thermodynamics mean field
- Grand potential
-
- 2 fluids (protons and neutrons)
55
212 B-Thermodynamics mean field
- Grand potential
-
- 2 fluids (protons and neutrons)
- Mean-field approximation
- Fermi
- Skyrme force (SLy4)
-
- density, kinetic density, energy
density - mean field,
effective mass
55
213 B-Thermodynamics mean field
- Grand potential
-
- 2 fluids (protons and neutrons)
- Mean-field approximation
- Fermi
- Skyrme force (SLy4)
-
- density, kinetic density, energy
density - mean field,
effective mass
55
214 B-Thermodynamics mean field
- Grand potential
-
- 2 fluids (protons and neutrons)
Fold
Liquid
Gas
mp
mn
56
215 B-Thermodynamics mean field
- Grand potential
-
- 2 fluids (protons and neutrons)
Fold
Liquid
Gas
mp
mn
Liquid
jump
- Discontinuity in r
-
- First order
- Liquid-gas
rp
Gas
mn
mp
56
216 C-Phase transition
Fold
Liquid
Gas
mp
mn
Liquid
jump
- Discontinuity in r
-
- First order
- Liquid-gas
rp
Gas
mn
mp
56
217 C-Phase transitions
57
218 C-Phase transitions
58
219 C-Phase transitions
Température (Degrés)
Chaleur (Calories par grammes)
58
220 C-Phase transitions
58
221 C-Phase transition
Fold
Liquid
Gas
mp
mn
Liquid
jump
- Discontinuity in r
-
- First order
- Liquid-gas
rp
Gas
mn
mp
58
222Chapitre 2
58
223D-Isospin in coexistence
59
224D-Isospin in coexistence
Neutron density
Liquid
rn
Gas
mn
mp
Proton density
Liquid
rp
Gas
mp
mn
59
225D-Isospin in coexistence distillation
Neutron density
(Except symmetric matter)
Liquid
rn
Gas
mn
Liquid
mp
lt
Proton density
Gas
Liquid
rp
Gas
mp
mn
59
226D-Isospin in coexistence distillation
(Except symmetric matter)
Liquid
Gas
59
227D-Isospin in coexistence distillation
(Except symmetric matter)
Liquid
Liquid symmetric
Gas
Gas asymmetric
59
228D-Isospin in coexistence distillation
Sc Scbmtsr
rp (fm-3)
(Except symmetric matter)
Liquid
Liquid
Gas
Gas
rn (fm-3)
Liquid symmetric
Gas asymmetric
59
229 E-Role of the force
T10 MeV
rp (fm-3)
rn (fm-3)
60
230E-Role of the force
SLy230a
T10 MeV
T10 MeV
rp (fm-3)
rn (fm-3)
60
231E-Role of the force
Strong force dependence
SLy230a
SGII
SIII
T10 MeV
60
232E-Role of the force
Strong force dependence
T10 MeV
60
233E-Role of the force
Strong force dependence
60
234E- Role of the force
Strong force dependence
T10 MeV
X
X
X
X
X
X
X
X
60
235E-Role of the force
Strong force dependence
T10 MeV
60
236E-Role of the force
Strong force dependence
T10 MeV
60
237E-Role of the force
Strong force dependence
T10 MeV
60
238E-Role of the force
Strong force dependence
T10 MeV
60
239E-Role of the force
Strong force dependence
T10 MeV
60
240E-Role of the force
T10 MeV