Repertory Grid: an example - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

Repertory Grid: an example

Description:

Brian (E1), Kim(E2) and Terry(E3) E1 and E3 are similar (school-leaver), E2 ... for scruffy (C9) 3-1 = 2 = 2. total = 17. Distance Matrix. E1 E2 E3 E4 E5 E6 E7 ... – PowerPoint PPT presentation

Number of Views:1191
Avg rating:3.0/5.0
Slides: 13
Provided by: DSSG
Category:

less

Transcript and Presenter's Notes

Title: Repertory Grid: an example


1
Repertory Grid an example
  • Students
  • Brian (E1)
  • Kim (E2)
  • Terry (E3)
  • Ian (E4)
  • Stephen (E5)
  • Nadia (E6)
  • David (E7)

2
The Session
  • Three students selected at random
  • Brian (E1), Kim(E2) and Terry(E3)
  • E1 and E3 are similar (school-leaver), E2 is
    different (mature)
  • Construct (C1) is school-leaver
    --------------------------- mature
  • E4 is mature
  • E5 is mature
  • E6 is mature
  • E7 is mature
  • Rating grid becomes
  • E1 E2 E3 E4 E5 E6 E7
  • C1 3 1 3 1 1 1 1 C1
  • (school-leaver) (mature)

3
(No Transcript)
4
Distance between concepts
  • eg between E1 and E2 sum of absolute values of
    the difference for each construct.
  • for school leaver(C1) 3-1 2 2
  • for poor qualifications (C2) 1-2 -1 1
  • for unsure (C3) 3-1 2 2
  • for asks questions (C4) 1-3 -2 2
  • for good attendance (C5) 1-3 -2 2
  • for does work (C6) 1-3 -2 2
  • for joins in socially (C7) 1-3 -2 2
  • for not organised (C8) 3 -1 2 2
  • for scruffy (C9) 3-1 2 2
  • total 17

5
Distance Matrix
  • E1 E2 E3 E4 E5 E6 E7
  • E1 0 17 12 8 6 13 10
  • E2 0 5 9 14 4 7
  • E3 0 10 12 9 8
  • E4 0 6 6 6
  • E5 0 9 8
  • E6 0 11
  • E7 0

6
Calculating a hierarchy
  • find the smallest distance E2 is closest to E6

4
E2
E6
7
Re-draw the distance matrix
  • Use an average approach
  • eg dist(E2,E1) 17, dist(E6,E1) 13 gt
    dist(E2/E6,E1) average(17,13) 15
  • E2/E6 E1 E3 E4 E5 E7
  • E2/E6 0 15 7 7.5 11.5 9
  • E1 0 12 8 6 10
  • E3 0 10 12 8
  • E4 0 6 6
  • E5 0 8
  • E7 0

8
Modifying Hierarchy

6
4
E2
E6
E5
E1
E4
E7
9
Re-draw the distance matrix
  • Again use an average approach eg
  • dist(E2/E6, E1/E5/E4/E7)) average of
  • dist(E2/E6,E1)
  • dist(E2/E6,E5)
  • etc
  • i.e. average(15,11.5,7.5,9) 10.75
  • E2/E6 E1/E5/E4/E7 E3
  • E2/E6 0
  • E1/E5/E4/E7 10.75 0
  • E3 7 10.5 0

10
Modifying the Hierarchy
13
7
6
4
E2
E6
E5
E1
E4
E7
E3
11
Re-draw the distance matrix
  • All we need to now is to calculate the distance
    between (E2/E6/E3) and (E1/E5/E4/E7)
  • i.e. average of dist(E2/E6, E1/E5/E4/E7) and
    dist(E3,E1/E5/E4/E7)
  • (10.75 10.5)/2 10.625

12
Modifying the Hierarchy
11
7
6
4
E2
E6
E5
E1
E4
E7
E3
Write a Comment
User Comments (0)
About PowerShow.com