Title: Triangle Congruence and Similarity Proofs
1Triangle Congruence and Similarity Proofs
Main Menu
Introduction
2Introduction!
- Hello, and welcome to the PowerPoint of math
greatness created by Amanda Rodriguez and Terra
Berardi! - Throughout this PowerPoint you will observe many
geometric proofs of many different shapes and
sizes, a slide dedicated to the basic components
of a proof for better understanding, as well as a
mini tour through the uses of sine, cosine, and
tangent. For your enjoyment weve also creatively
named our proofs. - If there is any trouble understanding a symbol,
please refer to our glossary which can be reached
by going to the main menu and selecting the
glossary button. - Thank you and we hope you enjoy this PowerPoint!
Main Menu
3Main Menu
- Proof components
- P1 P?Q
- P2 P
- ? Q
- Direct Proof
- P?Q - Positive Statement
- Q ?P - Converse Statement
- Indirect Proof
- Not P ? Not Q - Inverse Statement
- Not Q ? Not P -Contra Positive Statement
- Euclids Axioms
- AB, BC ?? AC
- AB AB
- A-B A-B
- Euclids Postulates
4- Glossary
- Dfn. Definition
- CPCTC- Corresponding parts of congruent triangles
are congruent - Alt. Alternate
- Int. Interior
- ? - angle
- ?? - parallel
- ? - perpendicular
- ? - triangle (also known as delta or change)
- ? - congruent
- ? - degree
- ? - therefore
- ? - finished
- - theta (or angle)
Main Menu
5Main page
Introduction
- Proofs
- Proof components
- Fun with Trigonometry!
- Glossary
- Similarities
6Proof Title Triangles- Perpendicular Bisector
Statement
Reason
- ?BAM ? ? CAM
- AB ? AC
- ?B ? ?C
- ? BAM ? ? CAM
- BM ? CM
- ?AMB ? ?AMC
- ?BMC ? 180?
- ?AMB ?AMC ?BMC
- ? AMB 90? ? AMC
- ? AM is ? bis. of BC
- Def. ? bis.
- Given
- ISO. ?
- ASA
- CPCTC
- CPCTC
- Def. Straight ?
- Addition (? ?)
- ? ? Share 180?
-
Given ? ABC AB ? ACAM is the ? bis. Of ? A
Prove AM is ? of ? A
7Proof Title Bowtie- Jimmy!
Statement
Reason
- ? DCE and ? ACB 90 ?
- AC ? CD
- BC ? CE
- ? ABC ? ?DEC
- ? ABC ? ? DEC
- ? ABC and ? DEC are alt. int. ?s
- ? AB ?? ED
- Dfn. Of ? bis.
- Dfn. Of ? bis.
- Dfn. Of ? bis.
- SAS
- CPCTC
- Dfn. Of Alt. Int. ?s
- Dfn. Of Alt. Int. ?s
-
Given ? ABC and ? DEC AD and BE are ? bis. Of
each other
Prove AB ?? ED
8Proof Title Rectangle- diagonals of a rectangle
(2-26-07)
Statement
Reason
- AB ? CD
- ?DBA ? ? BDC
- BD ? DB
- ? BDC ? DBA
- ? CB ? AD
- Dfn. Retangle
- Dfn. Rectangle
- Reflexive
- CPCTC
-
-
Given ABC
Prove AD ? CB
9Proof Title Triangle Tasha
Statement
Reason
-
- BM ? CM
- ? BMA 90 ? CMA
- AB ? AC
- ? B ? ? C
- ? AMB ? ? AMC
- ? BAM ? ? CAM
- ? AM is ? bis. of ?BAC
-
- Dfn. of ? bis.
-
- given
- iso. ?
- SAS
- CPCTC
-
Given ?ABC AB ? AC AM ? of BC
Prove AM is ? bisector of ? BAC
10Proof Title Parallelogram- Opposite Angles of a
Parallelogram
Statement
Reason
- ? ABC ? DCB
- CB ? BC
- ? ACB ? DBC
- ? ABC ? ? DCB
- ?A ? ?D
- ?ACB ?BCD ?BDC ?CBA
- ?ACD ? DBA
- Alt. Int. ?s
- Reflexive
- Alt. Int. ?s
- ASA
- CPCTC
- Euclids 2nd Postulate
-
Given ABCD
Prove ?A ? ?D and ?ACD ? DBA
11Proof Title Parallelogram- Diagonals of a
Parallelogram
Statement
Reason
- ? ABC ? DCB
- CB ? BC
- ? ACB ? DBC
- ? ABC ? ? DCB
- CD ? AB
- ? CED ? BAD
- ? CED ? ? BEA
- CE ? BE
- AE ? ED
- Alt. Int. ?s
- Reflexive
- Alt. Int. ?s
- ASA
- CPCTC
- Alt. Int. ?s
- ASA
- CPCTC
- CPCTC
-
-
Given ABCD
Prove CD ? AB and AE ? ED
12Proof Title Triangle Sir Mumsy-Pants
Statement
Reason
- AM ? BC
- AB ? AC
- ? ABM ? ? ACM
- ? BAM ? ? CAM
- ? BAM ? ? CAM
- BM ? CM
- ? MA is ? bis. BC
- Dfn. of Altit.
- given
- iso. ?
- ? sum and sub. Property
- ASA
- CPCTC
-
Given ? ABC AB ? AC MA is Altit. ? ABC
Prove MA is ? bis. Of BC
13Proof Title parallelogram given
Statement
Reason
-
- ?ABC ? ?DCB
- CB ? BC
- ?ACB ? ?DCB
- CD ? AB
- ?CDE ? ?BAE
- ? CED ? ? ADE
- CE ? EB
- AE ? ED
-
- Alt. int. ? s
- reflexive
- Alt. int. ? s
- ASA
- CPCTC
- Alt. int. ? s
- ASA
- CPCTC
-
-
Given parallelogram ABCD
Prove AE ? ED and that CE ? EB
14Proof Title bowtie Marty
Statement
Reason
-
- ? ABE ? ? CDE
- ? ECD ? ? EAB
-
- ? ?ECD, ?EAB are alt. int. ?s
-
- SAS
- CPCTC
- Dfn. Alt. int. ?s
-
Given thing ABCD BE? DE AE ? CE ? BEC 90
Prove ?ECD and ? EAB are alt. int. ?s
15Proof Title parallelogram polliferous
Statement
Reason
-
- ? ABC ? ? DCB
- CB ? BC
- ? ACB ? ? DBC
- ? ABC ? ? DCB
- CD ? AB
- ? CDE ? ? BAE
- ?CED ? ?BEA
- CE ? EB
- AE ? ED
-
- Alt. int. ? s
- reflexive
- Alt. int. ? s
- ASA
- CPCTC
- Alt. int. ? s
- ASA
- CPCTC
-
-
Given parallelogram ABCD
Prove AE ? ED CE ? EB
16Proof Title Parallelogram- FED
Statement
Reason
- AB ? ? DC
- ?FBD ? ?ECA
- FC ? ? DB
- ?BDF ? ?CAE
- ? ? ACE ? ? DBF
- Dfn.
- Alt. Int. ?s
- Dfn.
- Alt. Int. ?s
- ASA
-
Given ABCD CE ? BF
Prove ? ACE ? ? DBF
17Proof Title Parallelogram- Parallelogram of DOOM
Statement
Reason
- CB ? BC
- AB ?? DC
- ? ABC ?? ? DCB
- ? CBD ?? ?BCA
- ? CBD ? ?BCA
- CD ? BA
- EF ? FE
- EC ? FB
- EF FB ? FE EC
- ? ? AEB ? ?DFC
- Reflexive
- Dfn. Parallelogram
- Alt. Int. ?s
- Alt. Int. ?s
- ASCPCTCA
- Reflexive
- Given
- Addition
- SAS
-
Given ABCD CE ? BF
Prove ? AEB ? ?DFC
18Proof Title Vertical Angles-exavieerrre
Statement
Reason
- ? and ? are a linear pair
- ? and ? are supplementary ?s
- Likewise ? ? 180? ? ?
- ? ? ?
- Dfn. Of Linear Pair
- Dfn. Supplementary ?s
- Transitive Property
- Subtraction Property
-
?
Given To form 4 angles
?
Prove ? ? ?
19Proof Title Triangle- Straight line
Statement
Reason
- ? B ? ? D
- ? C ? ? E
- ? D ? A ? E 180 ?
- ? B ? A ? C 180 ?
- Alt. Int. ?s
- Alt. Int. ?s
- Straight angle/line
- Substitution
-
Given
? ?
Prove ? B ? A ? C 180?
20Proof Title Intersecting Lines - chubackaaah
Statement
Reason
- Suppose Not
- Then there are 2 intersection points
- ?
-
-
-
-
Given
Prove That they dont anywhere else
21Proof Title Intersecting Planes- pasley
Statement
Reason
- Suppose Not
- Then there is at least one point not on the line
contained by P and P -
- Point P makes 3 points which are non-collinear
on P and P at the same time P ? P -
- ? Postulate is true
- Modus Tolens
- Postulate
- Postulate
-
-
Given P ? P at Line
Prove That they dont intersect anywhere else
22Proof Title Butterfly- flutter
Statement
Reason
- DE ? EB
- ?D ? ?B
- ?DEA ? ?CEB
- ?AED ? ?CEB
- ?D, ?B are Alt. Int. ?s
- ?AD ? ? BC
- Given
- Given
- Vertical ?s
- ASA
- Dfn. Alt. Int. ?s
- Alt. Int. ?s
-
Given DE ? EB ?D ? ?B ABCD
Prove AD ? ? BC
23Proof Title Butterfly- schweniquewahs
Statement
Reason
- FE ? FG
- FD ? FH
- ?DFE ? ?HFG
- ?FGH ? ?FED
- ?HGF ? ?DEF
- ?G, ?E are Alt. Int. ?s
- DE ? ? GH
- Dfn. MP
- Dfn. MP
- Vertical ?s
- SAS
- CPCTC
- Dfn. Alt. Int. ?s
- Alt. Int. ?s
-
Given F is MP of DH and EG
Prove DE ? ? GH
24Proof Title garfunkle
Statement
Reason
- AB ?? DC
- ?FBD ? ?ECA
- AC ? DB
- ?BDF ? ?CAE
- ? ?ACE ? ?DBF
- Dfn. Parallelogram
- Alt. Int. ?s
- Dfn. Parallelogram
- Alt. Int. ?s
- ASA
-
Given Parallelogram ABCD CE ? BF
Prove ?ACE ? ?DBF
25Proof Title McDugalshmurfpoopsmith
Statement
Reason
- ?AOB ? ?DOE
- AO ? DO
- PO ? OP
- BP ? EP
- ?BPO 90 ? ? EPO
- BO ? EO
- ? ?AOB ? ?DEO
- Vertical ?s
- Given
- Reflexive
- Dfn. MP
-
- SAS
- CPCTC
- SAS
-
Given ABDE AO ? DO MPP
Prove ?AOB ? ?DEO
26Proof Title wendurful
Statement
Reason
- ? ABC is a right ?
- CD is altitude to hypotenuse
-
-
-
-
-
-
-
-
-
-
-
- Given
- Through a PT. there is one line ? to a given line
- Either leg is geometric mean between hypotenuse
and adj. segment - Multiple proportion property
- Either leg is geometric mean between hypotenuse
and adj. segment - Multiple proportion property
- Addition property
- Distributive property
- Substitution (if ab then either may be used)
Given ? abc is a right ?
Prove a² b² c²
27Proof Title Similarity- Mickey
Statement
Reason
- CPSTP
- Substitution
- Solve Proportion
- Segment addition
- Substitution
- Transitive prop.
-
Given ? ABC ?DBE
Prove BA12
28Proof Title Similarity- my-hine
Statement
Reason
-
- ?AEB ? ? DEC
- ?A ? ?D
- ?A, ?D Alt. Int. ?s
- ? AB ? ? DC
- 15 times 44 20 times 33
- Vertical ?s
- SAS
- CPSTP
- Dfn. Alt. Int. ?s
- Alt. Int. ?s are ?
-
Given The Image above
Prove AB ? ? DC
29Proof Title periwinkle
Statement
Reason
-
- ?ACB ? ? QCD
-
- x4.5
- AC QC
-
-
- y12
- BC DC
- ? ? ABC ? QDC
-
- Vertical Angles
- proportions
- solve proportion
- 3644.5
- proportions
-
- solve proportion
- 94312
- SAS
- ?
Given AB 3 DQ 4 BC 9 QC 6
Prove ? ABC ? QDC
Continue to Similarities
Main Menu
30SimilaritiesSolve for x!
Do the proportions match? Lets find out!
Step one
Step two
multiply
divide
Step three-solve!
Yes they do!
X36
Main Menu
Continue to fun with trig
31Fun with Trigonometry!
Main Menu
- What is Trigonometry?
- According to dictionary.com, trigonometry is
branch of mathematics that deals with relations
between sides and angles of triangles
- What is Trigonometry used for?
- Trig is most commonly used for finding angles or
sides of triangles. The next few slides will give
a brief demonstration of this.
A33.69? B56.31? I90 ?
Key Terms theta (or angle) ? delta (or
change)
32TANGENTS
- The formula
- To find the hypotenuse of the triangle
- Substitute the variables for the numbers
- tan30?
The hypotenuse of this triangle is 5.774
Then find the value of X x5tan30?
x5.5774 x2.887
x
Once you find the value, use the Pythagorean
theorem to find the hypotenuse. a²b²c²
5²2.887²c²
33COSINES
- The formula
- To find the opposite side of the triangle
- Substitute the variables for the numbers
- Cos30?
The adjacent side of this triangle is 5
Then find the value of X x5.774cos30?
x5.774.866 x5
X
34SINE
- The formula
- To find the opposite side of the triangle
- Substitute the variables for the numbers
- sin30?
The opposite side of this triangle is 2.887
Then find the value of X x5.774tan30?
x5.774.5 x2.887
5.774
x
Main Menu
Conclusion