Aquila - PowerPoint PPT Presentation

About This Presentation
Title:

Aquila

Description:

Stephan Meyer. Brown. Greg Tucker. UCLA. Ned Wright. Science Team: ... P.Ferreira, M.Joyce , Phys.Rev.Lett.79,4740(1997) C.Wetterich , Astron.Astrophys.301,321(1995) ... – PowerPoint PPT presentation

Number of Views:174
Avg rating:3.0/5.0
Slides: 61
Provided by: cwett
Category:
Tags: aquila | joyce | meyer

less

Transcript and Presenter's Notes

Title: Aquila


1
Quintessence
Dunkle Energie Ein kosmisches Raetsel
2
Quintessence
  • C.Wetterich

A.Hebecker,M.Doran,M.Lilley,J.Schwindt, C.Müller,G
.Schäfer,E.Thommes, R.Caldwell
3
What is our Universemade of ?
4
Quintessence !
fire , air, water, soil !
5
critical density
  • ?c 3 H² M²
  • critical energy density of the universe
  • ( M reduced Planck-mass , H Hubble
    parameter )
  • Ob?b/?c
  • fraction in baryons
  • energy density in baryons over critical energy
    density

6
Composition of the universe
  • Ob 0.045
  • Odm 0.225
  • Oh 0.73

7
gravitational lens , HST
8
spatially flat universe
Otot 1
  • theory (inflationary universe )
  • Otot 1.0000.x
  • observation ( WMAP )
  • Otot 1.02 (0.02)

9
picture of the big bang
10
Wilkinson Microwave Anisotropy Probe
A partnership between NASA/GSFC and Princeton
Science Team
NASA/GSFC Chuck Bennett (PI) Michael Greason Bob
Hill Gary Hinshaw Al Kogut Michele Limon Nils
Odegard Janet Weiland Ed Wollack
Brown Greg Tucker
UCLA Ned Wright
Princeton Chris Barnes Norm Jarosik Eiichiro
Komatsu Michael Nolta
Chicago Stephan Meyer
UBC Mark Halpern
Lyman Page Hiranya Peiris David Spergel Licia
Verde
11
mean values Otot 1.02 Om 0.27 Ob
0.045 Odm 0.225
12
Otot1
13
Dark Energy
  • Om X 1
  • Om 30
  • Oh 70 Dark Energy

h homogenous , often O? instead of Oh
14
Dark Energy homogeneously distributed
15
Dark Energy prediction The
expansion of the Universe
accelerates today !
16
(No Transcript)
17
Supernova cosmology
Riess et al. 2004
18
Structure formation fluctuation spectrum
CMB agrees with galaxy distribution Lyman a
forest and gravitational lensing effect !
Waerbeke
19
consistent cosmological model !
20
Composition of the Universe
  • Ob 0.045 visible clumping
  • Odm 0.225 invisible clumping
  • Oh 0.73 invisible homogeneous

21
What is Dark Energy ? Cosmological Constant
or Quintessence ?
22
Dynamics of Dark Energy
23
Cosmological Constant
  • Constant ? compatible with all symmetries
  • No time variation in contribution to energy
    density
  • Why so small ? ?/M4 10-120
  • Why important just today ?

24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
? ? 0
( ? ?)
30
(No Transcript)
31
asymptotic solution for cosmological constant
(k0)
32
(No Transcript)
33
problems with small ?
  • no symmetry explanation for ?/M4 10 -120
  • quantum fluctuations contribute

34
Anthropic principle
Banks Weinberg Linde
35
Cosmological Constant
  • Constant ? compatible with all symmetries
  • No time variation in contribution to energy
    density
  • Why so small ? ?/M4 10-120
  • Why important just today ?

36
Cosm. Const. Quintessence
static dynamical
37
Cosmological mass scales
  • Energy density
  • ? ( 2.410 -3 eV )- 4
  • Reduced Planck mass
  • M2.441018GeV
  • Newtons constant
  • GN(8pM²)

Only ratios of mass scales are observable !
homogeneous dark energy ?h/M4 6.5 10¹²¹
matter
?m/M4 3.5 10¹²¹
38
Time evolution
t² matter dominated universe t3/2
radiation dominated universe
  • ?m/M4 a³
  • ?r/M4 a4 t -2 radiation dominated
    universe
  • Huge age small ratio
  • Same explanation for small dark energy?

39
Quintessence
  • Dynamical dark energy ,
  • generated by scalar field
  • (cosmon)

C.Wetterich,Nucl.Phys.B302(1988)668,
24.9.87 P.J.E.Peebles,B.Ratra,ApJ.Lett.325(1988)L1
7, 20.10.87
40
Cosmon
  • Scalar field changes its value even in the
    present cosmological epoch
  • Potential und kinetic energy of cosmon contribute
    to the energy density of the Universe
  • Time - variable dark energy
  • ?h(t) decreases with time !

41
Cosmon
  • Tiny mass
  • mc H
  • New long - range interaction

42
Fundamental Interactions
Strong, electromagnetic, weak interactions
On astronomical length scales graviton cosm
on
gravitation
cosmodynamics
43
Evolution of cosmon field
  • Field equations
  • Potential V(f) determines details of the
    model
  • e.g. V(f) M4 exp( - f/M )
  • for increasing f the potential decreases
    towards zero !

44
Cosmological equations
matter


45
Cosmological equations
46
asymptotic solution for large time
M ? M
47
exponential potentialconstant fraction in dark
energy
48
General mechanism for cosmic attractor
49
Cosmic Attractors
Solutions independent of initial conditions
typically Vt -2 f ln ( t ) Oh
const. details depend on V(f) or kinetic term
early cosmology
50
A few references C.Wetterich ,
Nucl.Phys.B302,668(1988) , received
24.9.1987 P.J.E.Peebles,B.Ratra ,
Astrophys.J.Lett.325,L17(1988) , received
20.10.1987 B.Ratra,P.J.E.Peebles ,
Phys.Rev.D37,3406(1988) , received
16.2.1988 J.Frieman,C.T.Hill,A.Stebbins,I.Waga ,
Phys.Rev.Lett.75,2077(1995) P.Ferreira, M.Joyce
, Phys.Rev.Lett.79,4740(1997) C.Wetterich ,
Astron.Astrophys.301,321(1995) P.Viana, A.Liddle
, Phys.Rev.D57,674(1998) E.Copeland,A.Liddle,D.Wa
nds , Phys.Rev.D57,4686(1998) R.Caldwell,R.Dave,P
.Steinhardt , Phys.Rev.Lett.80,1582(1998) P.Stein
hardt,L.Wang,I.Zlatev , Phys.Rev.Lett.82,896(1999)
51
many models
52
kinetial
choose field variable such that potential has
standard units advantage f acts as dark energy
clock in cosmology
M1
A.Hebecker,
53
Dynamics of quintessence
  • Cosmon j scalar singlet field
  • Lagrange density L V ½ k(f) j j
  • (units reduced Planck mass M1)
  • Potential Vexp-j
  • Natural initial value in Planck era j0
  • today j276

54
Quintessence models
  • Kinetic function k(f) parameterizes the
  • details of the model - kinetial
  • k(f) kconst. Exponential
    Q.
  • k(f ) exp ((f f1)/a) Inverse power
    law Q.
  • k²(f ) 1/(2E(fc f)) Crossover Q.
  • possible naturalness criterion
  • k(f0) not tiny or huge !
  • - else explanation needed -

55
crossover quintessence
k(f) increase strongly for f corresponding to
present epoch
example
exponential quintessence
56
Quintessence becomes important today
57
scale factor as time-variable
58
determine kinetial k(f)by observation !
59
end
60
cosmological equations
Write a Comment
User Comments (0)
About PowerShow.com