Title: Lava
1Lava
- Mary Sheeran, Koen Claessen
- Chalmers University of Technology
- Satnam Singh, Xilinx
2Lava
- Not so much a hardware description language
- More a style of circuit description
- Emphasises connection patterns
- Think of Lego
3Behaviour and Structure
g
f
f -gt- g
4Parallel Connection Patterns
f -- g
5map f
6Four Sided Tiles
7Column
8Full Adder in Xilinx Lava
cout
b
sum
a
cin
fa (cin, (a,b)) (sum, cout)
where part_sum
xor (a, b) sum xorcy
(part_sum, cin) cout
muxcy (part_sum, (a, cin))
9Generic Adder
adder col fa
10Top Level
adder16Circuit do a lt- inputVec a
(bit_vector 15 downto 0) b lt- inputVec
b (bit_vector 15 downto 0) (s, carry)
lt- adder1 (a, b) sum lt- outputVec sum
(scarry)
(bit_vector 16 downto 0) ? circuit2VHDL add16
adder16Circuit ? circuit2EDIF add16
adder16Circuit ? circuit2Verilog add16
adder16Circuit
11114 Lines of VHDL
library ieee use ieee.std_logic_1164.all
entity add16 is port(a in std_logic_vector
(15 downto 0) b in std_logic_vector
(15 downto 0) c out std_logic_vector
(16 downto 0) ) end entity add16
library ieee, unisim use ieee.std_logic_1164.
all use unisim.vcomponents.all architecture
lava of add16 is signal lava
std_logic_vector (0 to 80) begin ... lut2_48
lut2 generic map (init gt "0110") port map (i0 gt
lava(5), i1 gt lava(21), o gt lava(48))
xorcy_49 xorcy port map (li gt lava(48), ci gt
lava(47), o gt lava(49)) muxcy_50 muxcy
port map (di gt lava(5), ci gt lava(47), s gt
lava(48), o gt lava(50)) lut2_51 lut2
generic map (init gt "0110") port map (i0 gt
lava(6), i1 gt lava(22), o gt lava(51))
xorcy_52 xorcy port map (li gt lava(51), ci gt
lava(50), o gt lava(52)) muxcy_53 muxcy
port map (di gt lava(6), ci gt lava(50), s gt
lava(51), o gt lava(53)) lut2_54 lut2
generic map (init gt "0110") port map (i0 gt
lava(7), i1 gt lava(23), o gt lava(54)) ...
12EDIF...
(edif add16 (edifVersion 2 0 0) (edifLevel 0)
(keywordMap (keywordLevel 0)) (status (written
(timeStamp 2000 11 19 15 39 43) (program
"Lava" (Version "2000.14")) (dataOrigin
"Xilinx-Lava") (author "Xilinx Inc.") ) ) ...
(instance lut2_78 (viewRef prim
(cellRef lut2 (libraryRef lava_virtex_lib))
) (property INIT (string "6"))
(property RLOC (string "R-7C0.S1"))
) (net lava_bit38 (joined
(portRef o (instanceRef muxcy_38))
(portRef ci (instanceRef muxcy_41))
(portRef ci (instanceRef xorcy_40)) )
)
13Xilinx FPGA Implementation
- 16-bit implementation on a XCV300 FPGA
- Vertical layout required to exploit fast carry
chain - No need to specify coordinates in HDL code
1416-bit Adder Layout
15Four adder trees
16No Layout Information
17Full Adder in Chalmers Lava
fa (cin, (a,b)) (sum, cout)
where part_sum
xor2 (a, b) sum xor2
(part_sum, cin) cout
mux (part_sum, (a, cin))
18 import Lava fa (cin,(a,b)) (sum,cout)
where part_sum xor2(a,b) sum
xor2(part_sum,cin) cout
mux(part_sum,(a,cin)) Maingt simulate fa
(high,(high,high)) (high,high)
19import Lava import Patterns fa (cin,(a,b))
(sum,cout) where part_sum xor2(a,b)
sum xor2(part_sum,cin) cout
mux(part_sum,(a,cin)) add row fa Maingt
simulate add (low,(low,high),(high,low),(low,high
)) (high,high,high,low)
20import Lava import Arithmetic fa (cin,(a,b))
(sum,cout) where checkFullAdd ins ok
where out1 fa ins out2 fullAdd ins
-- Lava built-in fullAdder ok out1 ltgt
out2 Maingt vis checkFullAdd Vis ... (t0.7)
Valid.
21 In file Verify/circuit.mv
.model circuit.inputs i0.inputs i1.inputs
i2.outputs good.table -gt low0.latch low
initt.reset initt1.table -gt w21.table i0 -gt
w90 01 1.table i1 -gt w100 01 1.table w9 w10
-gt w80 0 00 1 11 0 11 1 0
.. .table initt w2 w1_x -gt w1 1 - - w2 0 - -
w1_x .table w1 -gt good 0 0 1 1 .end
22import Lava import Arithmetic fa (cin,(a,b))
(sum,cout) where checkFullAdd ins ok
where out1 fa ins out2 fullAdd ins
-- Lava built-in fullAdder ok out1 ltgt
out2 Maingt satzoo checkFullAdd Vis ... (t0.1)
Valid.
23 In file Verify/circuit.cnf In
file Verify/circuit.cnf.out
c Generated by Lava2000 c c i0 6 c i1 7 c i2
8 p cnf 21 57 -5 6 7 0 -5 -6 -7 0 5 -6 7 0 5 -7
6 0 -4 5 8 0 -4 -5 -8 0 4 -5 8 0 4 -8 5 0
Parsing DIMACS Solving (randomize) 10000/38
(0.00 ). Computing static variable
order. restarts 0 conflicts
10 learnt_clauses
5 forgotten_clauses 3 decisions
10 propagations 79 inspect_binary
49 inspect_normal
194 inspect_learnt 2 CPU time
0 s UNSATISFIABLE real 0.1 user
0.0 sys 0.0
.. 11 -12 -21 0 -11 12 0 -11 21 0 1 -2 -11 0 -1
2 0 -1 11 0 -1 0
24Equivalence Checking
25View as property checking
26Synchronous Observer
- Only one language (so easier to use)
- Safety properties
- Used in verification of control programs
27Different styles
deland (a,b) c where newa delay low a
newb delay low b c and2(newa,newb) del
and1 (delay low -- delay low) -gt-
and2 deland2 delay (low,low) -gt- and2 deland3
delay zero -gt- and2
28Simulating sequential circuits
Maingt simulateSeq deland (low,low),(high,low),(hi
gh,high),(low,low) low,low,low,high Maingt
simulateSeq deland2 (low,low),(high,low),(high,hi
gh),(low,low) low,low,low,high
29Checking equivalence
anddel and2 -gt- delay low prop_Equivalent
circ1 circ2 a ok where out1 circ1 a
out2 circ2 a ok out1 ltgt out2 Maingt vis
(prop_Equivalent deland anddel) Vis ... (t0.2)
Valid. Maingt smv (prop_Equivalent deland3
anddel) Smv ... (t0.4) Valid.
30In Verify/circuit.smv
DEFINE w5 0 DEFINE w6 i0 ASSIGN init(w4)
w5 ASSIGN next(w4) w6 DEFINE w8
i1 ASSIGN init(w7) w5 ASSIGN next(w7)
w8 DEFINE w3 w4 w7 DEFINE w10 w6
w8 ASSIGN init(w9) w5 ASSIGN next(w9)
w10 DEFINE w2 !(w3 lt-gt w9) DEFINE w1
!(w2) SPEC AG w1
-- Generated by Lava2000 MODULE main VAR w1
boolean VAR w2 boolean VAR w3 boolean VAR
w4 boolean VAR w5 boolean VAR w6
boolean VAR i0 boolean VAR w7 boolean VAR
w8 boolean VAR i1 boolean VAR w9
boolean VAR w10 boolean
31Many delays
delayN 0 init id delayN n init delay init -gt-
delayN (n-1) init dAnd n delayN n (low,low)
-gt- and2 andD n and2 -gt- delayN n low Maingt
smv (prop_Equivalent (dAnd 10) (andD 10)) Smv
... (t0.9) Valid. Maingt smv (prop_Equivalent
(dAnd 15) (andD 15)) Smv ... (t230.3)
Valid. Same verification for 20 takes more than
35 minutes
32Note
- Could be viewed as Lustre (or similar) embedded
in Haskell - Generic circuits and connection patterns easy to
describe (the power of Haskell) - Verify FIXED SIZE circuits (squeezing the
problem down into an easy enough one)
33Working on lists
G
F
parl F G halveList -gt- (F -- G) -gt- append
34two f
f
f
35 two (two f)
36Many twos
twoN 0 circ circ twoN n circ two (twoN
(n-1) circ)
37Interleave
f
f
ilv f unriffle -gt- two f -gt- riffle
38Many interleaves
ilv (ilv (ilv C))
39Many interleaves
ilvN 0 circ circ ilvN n circ ilv (ilvN
(n-1) circ)
40Wiring
id2
swap
41Butterfly
bfly circ
bfly circ
42Defining Butterfly
bfly 0 circ id bfly n circ ilvN (n-1)
circ -gt- two (bfly (n-1) circ)
43Butterfly Layout on an FPGA
44Bitonic merger
compInt x,y imin(x,y), imax(x,y) compBit
x,y and2(x,y), or2(x,y) Maingt simulate
(bfly 3 compInt) 1,3,5,7,8,6,4,2 1,2,3,4,5,6,7,
8 Maingt simulate (bfly 2 compBit)
low,high,low,high low,high,low,high
45Describe connection pattern
- Then plug in variety of components, including
bit-serial etc. (see work of Vuillemin) - Sorters and mergers verified using 0-1 principle
and SAT-solver (see Knuth vol. 3) - Used higher order functions and polymorphism
46 Reduction tree for multiplier
5
4
4
3
3
carries
2
Fast Adder
47 - multiply (as,bs) p1ss
- where
- (p1p2,p3ps) prods_by_weight (as,bs)
- is redArray ps
- ss binaryAdder
(p2,p3is) - redArray addEmpty -gt- row compress -gt- first
48compress
49other cases
insC
h-cell
50 carries
5
4
3
51possible f-cell
fullAdd
halfAdd cells similar. Gives shortest wires
multiplier. Not great!
52But we just need to vary these!
insC
fullAdd
insS
53Dadda
fullAdd
excellent multiplier, but famous for
incomprehensibility, irregularity
54Regular reduction tree (Eriksson et al, CE)
fullAdd
Nowhere near as good as Dadda, but inspired this
work
55Idea Harden the wiring during circuit generation
using clever circuits. Shadow values estimate
delay through wires and cells.
cleverInsert
fullAdd
fullAdd
iddown
cleverInsert
56 - cleverInsert row cswap -gt- apr
- forms necessary wiring based on context (delays
on shadow wires)
57 Structure of circuit description (generator)
remains unchanged
- redArrayD hAdd fAdd iddown hds fds d ps
- ((redArrayW
- (combine hAdd (halfAddDelI hds))
- (combine fAdd (fullAddDelI fds))
- (combine iddown (iddownDelI d))
- cleverInsert
- cleverInsert) -gt- unmark) (mark ps)
- combine c a unzipp -gt- par c a -gt- zipp
58User explores designs by writing small analysis
functions and playing
- Maingt daddatest 16
- 0,20,8,45,40,50,45,70,65,75,70,90,85,
95,90,100,95,115,110,120, - 115,120,115,125,120,125,120,140,135,145,
140,145,140,145,140,140, - 135,135,130,130,125,125,120,120,115,115,
110,110,105,105,100,90, - 85,85,80,45,0,40
- Maingt simulate (compareW (daddatestW 16)
(daddatest 16)) - 0,0,2,0,2,0,2,2,4,2,4,4,6,6,8,6,8
,8,10,8,10,12,14,12,14,12, - 14,16,18,16,18,16,18,16,18,18,20,20,2
2,22,24,22,24,8,10,10, - 12,12,14,12,14,6,8,6,8,0,0,0
- Maingt satzoo (prop_mult multTDMW 8)
- Satzoo ... (t308.8) Valid.
59Result
- Simple parameterised description of fast adaptive
multiplier. Promises to perform well. - Like TDM except that wire-length, and not only
gate-delay is taken into account in choosing
which connections to make. Description is very
similar to that of basic multiplier. - All done inside Lava. Next step, go the whole
hog.
60Current uses of Lava
- All at low level of design
- Teaching and research in formal verification at
Chalmers - FPGA cores at Xilinx
- Our research on Wired builds upon Lava
61Summary
- Circuit generators are short and sweet
- Formal verification of fixed size circuits
- Clever circuits a good idiom
- Simple wire and gate delay modelling components
can guide synthesis (could be made fancier,
collaboration needed) - Design exploration uses Haskell as scripting
language (an unexpected bonus) - Need links to lower level tools
- Concentration on datapaths