Phyllotaxis - PowerPoint PPT Presentation

1 / 44
About This Presentation
Title:

Phyllotaxis

Description:

Phyllotaxis. A mathematical theory? Sjors van der Stelt. Fibonacci ... The incipient primordium forms in the largest available space left by the previous ones. ... – PowerPoint PPT presentation

Number of Views:487
Avg rating:3.0/5.0
Slides: 45
Provided by: sjorske
Category:

less

Transcript and Presenter's Notes

Title: Phyllotaxis


1
Phyllotaxis
  • A mathematical theory?
  • Sjors van der Stelt

2
Fibonacci sequence
  • F_11F_21F_n2 F_n1 F_n.
  • Gives 1,1,2,3,5,8,13,21,34,55,89,144,233, .
  • F_n1/F_n converges to f 0.61803 which is a
    root of x²x-1
    0.This is the golden section. The corresponding
    angle
  • f360º 137.5 º is called the golden angle.
  • Other elementary property gcd(f_n1,f_n)1

3
Phyllotactic Patterns in nature
4
(No Transcript)
5
(No Transcript)
6
(No Transcript)
7
(No Transcript)
8
(No Transcript)
9
(No Transcript)
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
Wrong picture taken from De Andere Linkerkant
Links en rechts in de evolutie from Tijs
Goldschmidt
14
Nobody understands?
  • From Tijs Goldschmidt
  • Door Goulds essay over Thompson nam ik ook
    voor het eerst kennis van Fibonacci-reeksen. Een
    Fibonacci-reeks vorm je door steeds de twee
    vorige getallen in de reeks bij elkaar op te
    tellen en daarmee het volgende getal te vormen.
    Dus 1, 1, 2, 3, 5, 8, 13, 21. () Zon
    dennenkegel bijvoorbeeld kan, als je de
    afzonderlijke schubben volgt, zijn opgebouwd uit
    13 links- en 21-rechtsdraaiende spiralen. Dus
    niet 16 en 24, of 9 en 19, maar uitgerekend 13 en
    21, allebei getallen uit de Fibonacci-reeks.
    Waarom volgen zoveel structuren deze curve die
    wiskundigen een logaritmische spiraal noemen?
    Thompsons antwoord op de vraag was destijds
    geweest dat deze abstracte vormen de best
    mogelijke oplossingen zijn voor algemene
    problemen.

15
(Serious) literature on phyllotaxis
  • Kepler and Leonardo were among the first to
    recognize the phenomenon
  • Extensively studied during nineteenth en
    twentieth century articles were mostly published
    in German or French during the nineteenth
    century, later English. However, English and
    French people rarely speak German!!(to be
    continued)

16
Preliminaries
  • The seeds or petals that form the phyllotactic
    patterns are called primordia.
  • There are n spirals, called parastichies,
    spiralling to the one direction (right, par
    exemple) and m parastichies going to the left.
    (Of course, there are others, but these are the
    best discernable. They are also called contact
    parastichies.)
  • If we number the primordia from youngest to
    oldest, then two neighbours on a n-parastichy
    differ n.
  • The angle between two primordium and the next
    oldest primordium is called the divergence
    angle
  • Wrong model fixed divergence angle radial
    growth of vk
  • Assume divergence angle d is a rational number
    (as a fraction of the number of revolutions), for
    example d 0.125
  • Bravais Bravais (1830s) proved that if a
    phyllotactic structure has d f then the
    parastichy numbers are equal to Fibonacci numbers
  • Tait (1872), Coxeter (70s) (pictures taken from
    Michael Naylor 02)

17
Numbering of primordia
18
We then get
19
Other examples
20
What if d f?
21
And what about d v2?
22
What if we choose d p?
23
So d p does not give an equal distribution of
the petals on the disk, but f and v2 do. Why?
  • The continued fraction expansion of p converges
    relatively rapidly
  • Now f and v2 have continued fraction expansions
    that converge slowly (according to a criterion of
    Klein)

24
Hofmeisters rules (1870s)
  • (Expended version Snow Snow (1950s), Couder
    Douady (1996))
  • The apex has an axis of symmetry.
  • Primordia form at edge of the apex and, due to
    the shoots growth, they move away radially from
    the center with radial velocity only depending on
    their distance to the edge of the apex.
  • New primordia are formed periodically the period
    is called the plastochrone.
  • The incipient primordium forms in the largest
    available space left by the previous ones.

25
Van Iterson (1907)
  • Mathematische und mikroskopische-anatomische
    Studien uber Blattstellungen
  • Es besteht natürlich die Möglichkeit, daß die
    Schraubenlinie durch die Punkte a_0 und b_0 alle
    Punkte des Systems umfaßt aber im allgemeinen
    wird dieses nicht eintreffen, und es wird
    anzunehmen sein, daß Punkte außerhalb derselben
    liegen. Wählen wir den Punkt g_0, der von allen
    diesen Punkten am dichtsten an der betrachteten
    Schraubenlinie liegt, und schrauben wir ... (p9)
    (Etcetera etc.!)
  • Van Itersons (nor Schoutes) theory is not
    mentioned as often as it should be in the
    abundant literature on phyllotaxis. This might be
    due to the fact that he wrote his thesis in
    German.

26
General principle
  • There are n spirals, called parastichies,
    spiralling to the one direction (right, par
    exemple) and m parastichies going to the left.
    (Of course, there are others, but these are the
    best discernable. They are also called contact
    parastichies.)
  • If we number the primordia from youngest to
    oldest, then two neighbours on a n-parastichy
    differ n.
  • If a primordium k on an n-parastichy gets farther
    from the apex, it looses contact with the its
    younger neighbour k-n a bifurcation happens

27
Numbering of primordia
28
Some calculations from Van Iterson
29
Some calculations from Van Iterson
30
Van Iterson diagram
31
Douady Couder (1996) experimental results
  • Douady Couder settled out an experiment in
    which magnetized oil droplets were periodically
    dropped on a disk. The experiments showed
    phyllotactic patterns to a high degree.
  • Numerical results published in the same sequence
    of articles showed the same.
  • A dynamical model proposed by the authors gave
    rise to a bifurcation diagram which is exactly
    the Van Iterson diagram

32
Dynamical systems approach
33
Dynamical systems approach
34
Dynamical systems approach
35
Dynamical systems approach
36
Dynamical systems approach
37
Dynamical systems approach
38
Dynamical systems approach
39
Dynamical systems approach
40
Dynamical systems approach
41
Dynamical systems approach
42
Dynamical systems approach
43
Further theories
  • Turing (52) morphogenesis
  • Cellular automata
  • Lindenmayer systems

44
Main References
  • Atela P, Gole C and Hotton, S. A Dynamical System
    for Plant Pattern Formation. Nonlinear Science
    2002
  • Douady S and Couder Y, Phyllotaxis as a Self
    Organising Process Part I,II and III. Journal of
    Theoretical Biology 1996
  • Van Iterson, G., Mathematische und
    mikroskopische-anatomische Studien uber
    Blattstellungen. Jena Verlag 1907
Write a Comment
User Comments (0)
About PowerShow.com