Lecture 12-13 notes - PowerPoint PPT Presentation

About This Presentation
Title:

Lecture 12-13 notes

Description:

Unisigned shift-add multiplier (version 1) ... radix (base) Mantissa. decimal point. Sign, magnitude. Sign, magnitude. Issues: Arithmetic ... – PowerPoint PPT presentation

Number of Views:80
Avg rating:3.0/5.0
Slides: 15
Provided by: engi57
Category:

less

Transcript and Presenter's Notes

Title: Lecture 12-13 notes


1
Lecture 12-13 notes
  • Reading Section 3.4, 3.5, 3.6
  • Multiplication
  • Unsigned multiplication
  • Hardware implementation
  • Division
  • Floating point

2
Unisigned shift-add multiplier (version 1)
  • 64-bit Multiplicand reg, 64-bit ALU, 64-bit
    Product reg, 32-bit multiplier reg

Shift Left
Multiplicand
64 bits
Multiplier
Shift Right
64-bit ALU
32 bits
Write
Product
Control
64 bits
Multiplier datapath control
3
MULTIPLY HARDWARE Version 2
  • 32-bit Multiplicand reg, 32 -bit ALU, 64-bit
    Product reg, 32-bit Multiplier reg

Multiplicand
32 bits
Multiplier
Shift Right
32-bit ALU
32 bits
Shift Right
Product
Control
Write
64 bits
4
Whats going on?
0
0
0
0
B0
B1
B2
B3
P0
P1
P2
P3
P4
P5
P6
P7
  • Multiplicand stays still and product moves right

5
Multiplier is Negative
  • Convert to positive-gtmult-gtsign conversion
  • Sign extended algorithm
  • 1 0 0 1 1 (-13)
  • x 0 1 0 1 1 (11)
  • 1 1 1 1 1 1 0 0 1 1
  • 1 1 1 1 1 0 0 1 1
  • 0 0 0 0 0 0 0 0
  • 1 1 1 0 0 1 1
  • 0 0 0 0 0 0 0
  • 1 1 0 1 1 1 0 0 0 1 (-143)

6
Fast Hardware
  • Use multiple hardware ALUs
  • Binary tree type structured
  • Parallel binary addition

7
Long Divide Paper Pencil
  • 1001 Quotient
  • Divisor 1000 1001010 Dividend 1000
    10 101 1010
    1000 10 Remainder
  • Dividend Quotient x Divisor Remainder

8
DIVIDE HARDWARE Version 1
  • 64-bit Divisor reg, 64-bit ALU, 64-bit Remainder
    reg, 32-bit Quotient reg

Shift Right
Divisor
64 bits
Quotient
Shift Left
64-bit ALU
32 bits
Write
Remainder
Control
64 bits
9
  • Initialization
  • Set 32-bit Quotient reg to 0
  • Place the divisor in the high half of the 64-bit
    divisor reg
  • Remainder reg initialized with dividend

10
Binary representation of fraction
  • (1001.1001)2 1 x 2 3 0 x 2 2 0 x 2 1 1 x 2
    0
  • 1 x 2-1 0 x 2-2 0 x
    2-3 1 x 2-4
  • (9.5625)10
  • (0.625) 10 (0.5 0.125) 10
  • 1 x 2-1 0 x 2-2 1 x 2-3
  • (0.101) 2

2-1 2-2 2-3 2-4 2-5 2-6
0.5 0.25 0.125 0.0625 0.03125 0.0150625
11
Scientific Notation
exponent
decimal point
Sign, magnitude
23
-24
6.02 x 10 1.673 x 10
radix (base)
Mantissa
Sign, magnitude
  • Issues
  • Arithmetic (, -, , / )
  • Representation, Normal form
  • Range and Precision
  • Rounding
  • Exceptions (e.g., divide by zero, overflow,
    underflow)

12
IEEE 754 Floating-Point
1
8
23
single precision
S
E
F
fraction sign magnitude, normalized binary
significand w/ hidden integer bit 1.F
exponent excess 127 binary integer
actual exponent is e E - 127
0 lt E lt 255
S
E-127
N (-1) 2 (1.F)
0 0 00000000 0 . . . 0 -1.5 1
01111111 10 . . . 0
Magnitude of numbers that can be represented is
in the range
-126
127
23
)
2
(1.0)
(2 - 2
to
2
which is approximately
-38
38
to
3.40 x 10
1.8 x 10
(integer comparison valid on IEEE Fl.Pt. numbers
of same sign!)
13
Example -0.75 in float point
  • -0.75-(0.50.25) -(0.11)2
  • In scientific notation, the value is -0.112 x 20
  • normalized scientific notation
  • -1.12 x 2-1
  • In single precision
  • (-1) S x (1 fraction) x 2 (exponent-127)
  • S 1
  • fraction 10000000000000000000000
  • Exponent 126 01111110

10000000000000000000000
01111110
1
14
Floating Point Addition Algorithm
  • Add x0.5 and y 0.4375 in binary
  • (2) x 1.000 x 2-1, y -1.110 x 2-2. right shift
    the smaller exponent (y) so that both have same
    exponent value
  • y -0.111 x 2-1
  • (3) Add the fraction parts
  • 1.000 x 2-1 -0.111 x 2-1 0.001 x 2-1
  • (4) left shift result to normalize
  • 0.001 x 2-11.000 x 2-4
  • (5) Round (not needed in this example)
Write a Comment
User Comments (0)
About PowerShow.com