Minimal interval completions - PowerPoint PPT Presentation

1 / 20
About This Presentation
Title:

Minimal interval completions

Description:

... completions. Pinar Heggernes, Bergen, Norway. Karol Suchan, ... Yngve Villanger, Bergen, Norway. 2. Minimal triangulations. Input: an arbitrary graph G=(V,E) ... – PowerPoint PPT presentation

Number of Views:33
Avg rating:3.0/5.0
Slides: 21
Provided by: shm4
Category:

less

Transcript and Presenter's Notes

Title: Minimal interval completions


1
Minimal interval completions
  • Pinar Heggernes, Bergen, Norway
  • Karol Suchan, Orléans, France
  • Ioan Todinca, Orléans, France
  • Yngve Villanger, Bergen, Norway

2
Minimal triangulations
  • Input an arbitrary graph G(V,E)
  • Output a chordal graph H(V,E F)
  • treewidth s.t. ?(H) is minimum
  • minimum fill-in s.t. F is minimum
  • Both problems are NP-hard.
  • Compute a minimal triangulation H.
  • F is inclusion-minimal among all possibilities

3
Minimal interval completions
  • Input an arbitrary graph G(V,E)
  • Output an interval graph H(V,E F)
  • pathwidth s.t. ?(H) is minimum
  • profile s.t. F is minimum
  • Both problems are NP-hard.
  • Find a minimal interval completion H.
  • F is inclusion-minimal among all possibilities

4
Minimal interval completions versus minimal
triangulations
  • MinTriang
  • O(nm) algorithms Lex-M by Rose, Tarjan, Lueker
    76
  • o(n3) Kratsch, Spinrad 04
  • O(n?log n) Heggernes, Telle, Villanger 05
  • MinIntComp
  • nothing before
  • O(n5) in this talk even O(n4), perhaps O(n3 log
    n)

5
Naive approaches
  • edge-by-edge removal
  • H any int. completion (e.g. a clique)
  • while 9e 2 E(H) E(G) s.t. H-e interval H
    H - e
  • interval chordal Ã… AT-free
  • minimal triangulation then destroy the ATs
  • destroy the ATs then minimal triangulation
  • None of them works

6
The vertex incremental approach
  • Vv1, v2, , vn.
  • Hi a min int comp of GiGv1, , vi.
  • use Hi to compute Hi1 by adding an
    inclusion-minimal set of fill edges from vi1 to
    Hi.
  • Hi1 is indeed a min int comp of Gi1 (easy).

Hi
vi1
7
The new problem
  • G an interval graph G G x
  • MinIntComp of G, fill edges incident to x

G
KL
KR
  • fill a, c, b

8
Nice clique paths
G
KR
KL
G
KL
KR
  • find a nice clique-path of G
  • Spared(CP), the set of cliques left to KL or
    right to KR, must be maximal

9
Forced separators
  • Theorem. Berry, Heggernes, Villanger 04
  • u,v 2 N(x) non adjacent
  • S a minimal u,v-separator in G
  • S must be filled.
  • S is the intersection of two consecutive cliques

G
Sa
10
Blocks associated to S
  • Oi Ci NG(Ci)
  • the cliques in Oi form a connected subpath in any
    clique path of G
  • they partition the set of cliques of G
  • Clique path permutation of the Ois.

C1
S
C2
C3
11
Pre-order on blocks
  • Can Oj appear between Oi and the S-edge?
  • Only if Oi Ã… S is contained in every clique of
    Oj.
  • We write Oi ¹ Oj
  • pre-order
  • of width at most two

G
S
O1
O2
O3
O1
O2

O3
12
Dilworth decompositions and clique paths
  • Theorem. Clique paths of G Dilworth
    decompositions (L,R) of (Blocks(S),¹).
  • here L(O1, O2), R(O3)

L
R
G
S
O1
O2
O3
O1
O2

O3
13
Nice Dilworth decompositions
  • OL (OR) the leftmost (rightmost) block containing
    a private neighbour of x
  • Spared(L,R) outside the OL OR interval

L
R
S
OR
OL
Theorem. Spared(L,R) must be maximal. A nice
decomp. can be computed in O(n3).
14
Computing nice Dilworth decomposition
  • topological sorting of the refined pre-order
  • greedy decomposition, bottom-up
  • equivalent tilt each component of the
    co-comparability graph
  • the components do not interlace


pre-order
15
The algorithm MinIntComp
  • At each intremental step
  • choose S
  • compute a nice Dilworth decomposition of
    (Blocks(S),¹).
  • fill the blocks strictly between OL and OR
  • call MinIntComp on OL then on OR

L
R
S
OR
OL
16
Summary
  • Theorem A minimal interval completion of G can
    be computed in O(n5) time.
  • vertex-incremental approach.
  • optimized Dilworth decompositon of a pre-order of
    width two.
  • O(n4) with a faster computation of the pre-order.

17
Further questions
  • Pathwidth and profile
  • find the local optimum when adding a new vertex
  • choose a good ordering of the vertices
  • An algorithm computing any minimal interval
    completion?
  • Extracting a minimal interval completion from an
    arbitrary one?

18
Thank you!
?
19
Edge-by-edge removal counterexample
20
Minimal triangulations destroying ATs
counterexamples
Write a Comment
User Comments (0)
About PowerShow.com