Compressing Texture Coordinates - PowerPoint PPT Presentation

About This Presentation
Title:

Compressing Texture Coordinates

Description:

[Touma & Gotsman, Graphics Interface 98] '... treat like vertex ... Generalization of TG coder. Connectivity. Compressing Polygon Mesh Connectivity with ... – PowerPoint PPT presentation

Number of Views:24
Avg rating:3.0/5.0
Slides: 61
Provided by: martini5
Learn more at: http://www.cs.unc.edu
Category:

less

Transcript and Presenter's Notes

Title: Compressing Texture Coordinates


1
CompressingTexture Coordinates
with hSelective
LinearPredictions
Martin Isenburg
Jack Snoeyink
University of North Carolina at Chapel Hill
2
Take this home
  • We predict texture coordinateswith four
    different rules taking into account the
    presence of mapping discontinuities.
  • We compress the corresponding corrective vectors
    with different arithmetic contexts.

3
Overview
  • Background
  • Compressing Vertex Positions
  • Linear Prediction Schemes
  • Texture Coordinate Mappings
  • Compressing Texture Coordinates
  • Alternative Approaches
  • Summary

4
Background
5
Meshes - Basic Ingredients
  • connectivity
  • geometry

6
Meshes - Optional Properties
  • mapping
  • values

7
Mesh Compression
  • Fast Rendering
  • Progressive Transmission
  • Maximum Compression

Geometry Compression Deering, 95
Maximum Compression
8
Mesh Compression
  • Geometry Compression Deering, 95
  • Fast Rendering
  • Progressive Transmission
  • Maximum Compression
  • Connectivity
  • Geometry
  • Properties

Geometry Compression Deering, 95
Maximum Compression
Properties
9
Mesh Compression
  • Geometry Compression Deering, 95
  • Fast Rendering
  • Progressive Transmission
  • Maximum Compression
  • Connectivity
  • Geometry
  • Properties
  • Mapping
  • Values

Geometry Compression Deering, 95
Maximum Compression
Properties
Texture Coordinates
Values
10
Triangle Mesh Compression
Triangle Mesh Compression Touma Gotsman,
Graphics Interface 98
  • Texture Coordinates ???

Yes! But
11
Generalization of TG coder
12
CompressingVertex Positions
13
Compressing Vertex Positions
  • Classic approaches 95 98
  • linear prediction

14
Compressing Vertex Positions
  • Classic approaches 95 98
  • linear prediction
  • Recent approaches 00 02
  • spectral
  • re-meshing
  • space-dividing
  • vector-quantization
  • feature discovery
  • angle-based

15
Compressing Vertex Positions
  • Classic approaches 95 98
  • linear prediction
  • Recent approaches 00 02
  • spectral
  • re-meshing
  • space-dividing
  • vector-quantization
  • feature discovery
  • angle-based

Spectral Compressionof Mesh Geometry Karni
Gotsman, 00
16
Compressing Vertex Positions
  • Classic approaches 95 98
  • linear prediction
  • Recent approaches 00 02
  • spectral
  • re-meshing
  • space-dividing
  • vector-quantization
  • feature discovery
  • angle-based

Progressive GeometryCompression Khodakovsky et
al., 00
17
Compressing Vertex Positions
  • Classic approaches 95 98
  • linear prediction
  • Recent approaches 00 02
  • spectral
  • re-meshing
  • space-dividing
  • vector-quantization
  • feature discovery
  • angle-based

Geometric Compressionfor interactive
transmission Devillers Gandoin, 00
18
Compressing Vertex Positions
  • Classic approaches 95 98
  • linear prediction
  • Recent approaches 00 02
  • spectral
  • re-meshing
  • space-dividing
  • vector-quantization
  • feature discovery
  • angle-based

Vertex data compressionfor triangle meshes Lee
Ko, 00
19
Compressing Vertex Positions
  • Classic approaches 95 98
  • linear prediction
  • Recent approaches 00 02
  • spectral
  • re-meshing
  • space-dividing
  • vector-quantization
  • feature discovery
  • angle-based

20
Compressing Vertex Positions
  • Classic approaches 95 98
  • linear prediction
  • Recent approaches 00 02
  • spectral
  • re-meshing
  • space-dividing
  • vector-quantization
  • feature discovery
  • angle-based

Angle-Analyzer A triangle-quad mesh
codec Lee, Alliez Desbrun, 02
21
Linear Prediction Schemes
22
Linear Prediction Schemes
  1. quantize positions with b bits
  2. traverse positions
  3. linear prediction from neighbors
  4. store corrective vector

23
Linear Prediction Schemes
  1. quantize positions with b bits
  2. traverse positions
  3. linear prediction from neighbors
  4. store corrective vector

24
Linear Prediction Schemes
  1. quantize positions with b bits
  2. traverse positions
  3. linear prediction from neighbors
  4. store corrective vector

25
Linear Prediction Schemes
  1. quantize positions with b bits
  2. traverse positions
  3. linear prediction from neighbors
  4. store corrective vector

26
Deering, 95
  • Prediction Delta-Coding
























processed region

unprocessed region





27
Taubin Rossignac, 98
  • Prediction Spanning Tree

processed region
unprocessed region
28
Touma Gotsman, 98
  • Prediction Parallelogram Rule

processed region
unprocessed region
29
Parallelogram Rule




good prediction
badprediction
badprediction
non-convex
non-planar
30
Not Triangles Polygons!
Face Fixer Isenburg Snoeyink, 00
31
Non-triangular Faces
  • Question Why would a mesh have a
    non-triangular face?

32
Non-triangular Faces
  • Question Why would a mesh have a
    non-triangular face?

Answer Because there was no reason to
triangulate it! This face was
convex and planar.
? use this info for better predictions
33
within versus across
across-prediction
within-prediction











  • ? within-predictions avoid creases

? within-predictions often find existing
parallelograms (? quadrilaterals)
34
Texture Coordinate Mappings
35
Texture Mapping (1)
  • the process of applying a texture image to a
    mesh

36
Texture Mapping (2)
  • putting every 3D polygon of the mesh in
    correspondence with a2D polygon in the image

37
Discontinuities in Mapping (1)
  • some vertices of the mesh havemultiple
    corresponding locations in texture
    space

38
Discontinuities in Mapping (2)
  • vertices may have multiple associated texture
    coordinates



39
Encoding the Mapping (1)
  • 1. distinguish vertices

1
2. distinguish corners
0
1
40
Encoding the Mapping (2)




26
24


23
25

41
Encoding the Mapping (3)






37

38
42
Why Discontinuities ?
  • cuts required to flatten mesh
  • no boundary
  • non-zero genus
  • piece-wise texture mapping
  • author / artist decision
  • easier for automated techniques
  • additional cuts to meet objectives
  • angle/area preserving parameterization
  • minimizing texture stretch

43
Piece-wise Mappings (1)
44
Piece-wise Mappings (2)
45
CompressingTexture Coordinates
46
Selective Linear Prediction
  • analyze neighborhood
  • use most promising predictor
  • ? within (for polygon meshes only)
  • ? across
  • ? nearby
  • ? center
  • avoid unreasonable predictions
  • compress with different contexts

47
Unreasonable Predictions
48
Example Scenarios (1)








13


16



11


49
Example Scenarios (2)





20

19



21

22


26


25



50
Example Scenarios (3)



50
53



54
52

47


44


51
Example Scenarios (4)








81




80



74


52
Example Bit-Rates (10 bit)
by prediction type
model
within
across
nearby
center
lion wolf raptor
5.6 8.5 9.7 20.2 5.9 9.1 11.1 20.2 5.5 8.4 8.9
19.5
53
Selection Histogram
frequency of prediction type
model
within
across
nearby
center
lion wolf raptor
82 14 3 1 84 13 2 1 78 18
5 1
54
Alternative Approaches
55
Alternative Approaches
  • make texture coordinates implicit
  • change the mesh (re-meshing)

Geometry Images Gu et al, 02
  • change the image (re-texturing)

Bounded Distortion piece-wise Mesh
Parameterization Sorkine et al, 02
Space-Optimized Texture Maps Balmelli et al,
02
56
Summary Acknowledgments
57
Summary (1)
  • use the parallelogram predictor for texture
    coordinates
  • avoid unreasonable predictions across
    discontinuities (seams)
  • switch to less-promising predictor
  • compress resulting corrective vectors with
    separate arithmetic contexts

58
Summary (2)
  • compressionsoftware asbenchmarkfor
    futureresearch isavailable onthe Web

local link
http//www.cs.unc.edu/isenburg/pmc/
59
Acknowledgments
CuriousLabs,California
  • ArchaeologyTechnologyLabs,North DakotaState
    University

60
  • Thank You!

http//www.cs.unc.edu/isenburg/pmc/
Write a Comment
User Comments (0)
About PowerShow.com