Title: Ken Goldberg
1Collaborative Teleoperation
-
- Ken Goldberg
- IEOR and EECS, UC Berkeley
2Students and Colleagues Dezhen Song Frank van
der Stappen Vladlen Koltun Sariel Har-Peled Gopal
Gopalkrishnan Ron Alterovitz In Yong Song Judith
Donath David Pescovitz Eric Paulos Â
3Geometric Algorithms for Manufacturing
4(No Transcript)
5Outline
- Collaborative Teleoperation
- Cinematrix
- Co-opticon
- Tele-Twister
6(No Transcript)
7Nikola Tesla (1898)
8Telerobotics Related Work
- Tesla, 1898
- Goertz, 54
- Mosher, 64
- Tomovic, 69
- Salisbury,Bejczy, 85
- Ballard, 86
- Sheridan, 92
- Sato, 94
- Presence Journal 92-
- O. Khatib, et al. 96
9(No Transcript)
10(No Transcript)
11(No Transcript)
12(No Transcript)
13(No Transcript)
14Collaborative Control
15 Taxonomy (Tanie, Matsuhira, Chong 00)
Single Operator, Single Robot (SOSR)
Single Operator, Multiple Robot (MOSR)
Multiple Operator, Single Robot (MOSR)
16Outline
- Collaborative Teleoperation
- Cinematrix
- Co-opticon
- Tele-Twister
17Cinematrix audience participation system R.
and L. Carpenter (1992)
18A model of Cinematrix
Cursor on Shared Screen
Audience (2 groups)
dx
dy
(x,y)
19Cinematrix Simulator
20Ideal Response
x x fx(x), y fy(x) T
where x x, y T f Q(x,y) x sgn(g) ? -1,
0, 1 g(x,y) x2 y2 - r2
21Performance Metric
Error ? local error / total area Performance
1 - Error
22- Performance with Audience Diversity
- Ideal Players
- Drop outs
- Malicious Players
- Random Players
- Time Delayed Players
23 drop-outs,
Performance
100
63
0
50
100
0
malicious agents
24 random agents
Performance
100
63
0
50
100
0
25Time delay (cycles)
Time Delayed Agents
26Outline
- Collaborative Teleoperation
- Cinematrix
- Co-opticon
- Tele-Twister
27n users
1 pan, tilt, zoom robotic camera
co-opticon
28Example input 7 requested frames
29One Optimal Frame
Co-opticon Problem Given n requests, find
optimal frame
30Related Work
- Facilities Location Problems
- Megiddo and Supowit 84
- Eppstein 97
- Halperin et al. 02
- Rectangle Fitting
- Grossi and Italiano 99,00
- Agarwal and Erickson 99
- Mount et al 96
- Kapelio et al 95
31Related Work
- Similarity Measures
- Kavraki 98
- Broder et al 98, 00
- Veltkamp and Hagedoorn 00
- Distributed robot algorithms
- Sagawa et al 01, Safaric01
- Parker02, Bulter et al. 01
- Mumolo et al 00, Hayes et al 01
- Agassounon et al 01, Chen 99
32Problem Definition
- Requested frames ?ixi, yi, zi, i1,,n
33Problem Definition
- Assumptions
- Camera has fixed aspect ratio 4 x 3
- Candidate frame ? x, y, z t
- (x, y) ? R2 (continuous set)
- z ? Z (discrete set)
4z
34Problem Definition
- Satisfaction for user i 0 ? Si ? 1
? ? ? ?i
? ?i
Si 0
Si 1
35 Similarity Metrics
-
- Symmetric Difference
- Intersection-Over-Union
Nonlinear functions of (x,y)
36Satisfaction Metrics
- Intersection over Maximum
Requested frame ?i , Area ai
Candidate frame ? Area a
pi
37Intersection over Maximum si(? ,?i)
Requested frame ?i Candidate frame ?
si 0.20 0.21 0.53
38(for fixed z)
Requested frame ?i
Candidate frame ?(x,y)
39- Satisfaction Function
- si(x,y) is a plateau
- One top plane
- Four side planes
- Quadratic surfaces at corners
- Critical boundaries 4 horizontal, 4 vertical
40Objective Function
for fixed z
ShareCam problem Find ? arg max S(?)
41Properties of Global Satisfaction
- S(x,y) is non-differentiable, non-convex, but
- piecewise linear along axis-parallel lines.
42ShareCam Algorithms
- Bruteforce Algorithm
- Compute S at each pixel (x,y)
- O(whmn)
- w, h width and height of panoramic image
- m number of zoom levels
- n users
43Approximation Algorithm
Compute S(x,y) at lattice of sample points
d
44Approximation Algorithm
? Optimal frame
Smallest frame at lattice that encloses ?
Optimal at lattice
45Exact Algorithm
- Virtual corner Intersection between boundaries
- Self intersection
- Frame intersection
y
46Exact Algorithm
- Claim An optimal point occurs at a virtual
corner. - Proof
- Along vertical boundary, S(y) is a 1D piecewise
linear function extrema must occur at boundaries
47Exact Algorithm
- Exact Algorithm
- Check all virtual corners
- ?(mn2) virtual corners
- ?(n) time to evaluate S for each
- ?(mn3) total runtime
48Improved Exact Algorithm
- Sweep horizontally solve at each vertical
- Sort critical points along y axis O(n log n)
- 1D problem at each vertical boundary O(nm)
- O(n) 1D problems
- O(mn2) total runtime
O(n) 1D problems
49Distributed Algorithm
- More users ? More computers available
50Distributed Algorithm
- At the Server
- Sort horiz. boundaries
- O(n log n)
- At the Client
- Solve 1D problem
- for own
- vertical boundaries.
- O(nm)
- O(n(m log n)) Total
Four 1D problems
51Examples
52Examples
53(No Transcript)
54www.co-opticon.net
55Future Work
- Continuous zoom (m?)
- Multiple outputs
- p cameras
- p views from one camera
- Temporal version fairness
- Integrate si over time minimize accumulated
dissatisfaction for any user - Network / Client Variability load balancing
- Obstacle Avoidance
56Outline
- Collaborative Teleoperation
- Cinematrix
- Co-opticon
- Tele-Twister
57robot
participants
remote environment
58tele-actor
participants
remote environment
59 Spatial Dynamic Voting
60Query Types
Navigational Yes/No Binary
61 Genetics Laboratory (LBL) November 2002
14 seniors from Galileo High, SF
62(No Transcript)
63(No Transcript)
64Spatial Dynamic Voting
votel voting element v(x,y,t)
65Automated Scoring (measuring user performance)
- Rewarding
- Attentiveness
- Engagement
- Responsiveness
- Collaboration
- Leadership
- How well you lead
- How well others follow
- A metric based on
- Votel position (x,y)
- Votel arrival time t
66(No Transcript)
67Majority cluster
68Leadership metric
Defined in terms of membership in the majority
cluster, arrival time in that cluster, and
weighted sum of previous leadership scores (with
exponential decay).
where
69Algorithm
Model each votel as a truncated spatial gaussian
distribution
70Algorithm
Spatially sum all gaussian distributions.
71Algorithm
Regions that intersect iso-density plane
define clusters
p 0.1
Grid Approximation 160 x 160 grid takes about
10 ms
72(No Transcript)
73tele-jenga, july 2003
74(No Transcript)
75(No Transcript)
76(No Transcript)
77(No Transcript)
78(No Transcript)
79(Audio)
80(No Transcript)
81- Measuring effect of
- hiding scores and/or other votels
- changing frame rate
82Google tele-twister Live games Selected
Fridays, 12-1pm Pacific Time
83Summary
- Collaborative Telepresence
- Cinematrix
- Co-opticon
- Tele-Twister
- goldberg_at_ieor.berkeley.edu
84(No Transcript)
85(No Transcript)