Phytoplankton Stoichiometry - PowerPoint PPT Presentation

1 / 75
About This Presentation
Title:

Phytoplankton Stoichiometry

Description:

Kellogg Biological Station, Michigan State University. Elena Litchman ... Interspecific competition. Quota-dependent nutrient uptake. Quota-dependent uptake ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 76
Provided by: badtz
Category:

less

Transcript and Presenter's Notes

Title: Phytoplankton Stoichiometry


1
Phytoplankton Stoichiometry
  • Christopher A. Klausmeier
  • Kellogg Biological Station, Michigan State
    University

Elena Litchman Kellogg Biological Station,
Michigan State University
Tanguy Daufresne INRA Centre de Toulouse
Simon A. Levin Princeton University
2
(No Transcript)
3
(No Transcript)
4
Phytoplankton Stoichiometry
  • Christopher A. Klausmeier
  • Kellogg Biological Station, Michigan State
    University

Elena Litchman Kellogg Biological Station,
Michigan State University
Tanguy Daufresne INRA Centre de Toulouse
Simon A. Levin Princeton University
5
Alfred C. Redfield
6
Phytoplankton C106N16P1
(Redfield 1934, 1958)
Alfred C. Redfield
7
Phytoplankton C124N16P1S1.3K1.7Mg0.56Ca0.5Fe0.00
75Zn0.0008Cu0.00038Cd0.00021Co0.00019 (Quigg et
al. 2003, Nature 425 291294 Ho et al. 2003, J.
Phycol. 11451159)
8
Phytoplankton C124N16P1S1.3K1.7Mg0.56Ca0.5Fe0.00
75Zn0.0008Cu0.00038Cd0.00021Co0.00019 (Quigg et
al. 2003, Nature 425 291294 Ho et al. 2003, J.
Phycol. 11451159)
Coastal Ocean C2333N21.4P1S28,000K10,000Mg53,500
Ca10,400Fe0. 894Zn0.31Cu0.157Cd?Co0.0017
Open Ocean C?N14.5P1S?K?Mg?Ca?Fe0.
079Zn3.12Cu1.01Cd0.346Co11.8
9
Phytoplankton C124N16P1S1.3K1.7Mg0.56Ca0.5Fe0.00
75Zn0.0008Cu0.00038Cd0.00021Co0.00019 (Quigg et
al. 2003, Nature 425 291294 Ho et al. 2003, J.
Phycol. 11451159)
Coastal Ocean C2333N21.4P1S28,000K10,000Mg53,500
Ca10,400Fe0. 894Zn0.31Cu0.157Cd?Co0.0017
Supply/Demand C18.8N1.34P1S21,500K5880Mg95,500Ca
20,800Fe119Zn388Cu413Cd?Co8.95
Open Ocean C?N14.5P1S?K?Mg?Ca?Fe0.
079Zn3.12Cu1.01Cd0.346Co11.8
Supply/Demand C?N0.913P1S?K?Mg?Ca?Fe10.5Zn3900Cu
2660Cd1650Co62,100
10
Phytoplankton C124N16P1S1.3K1.7Mg0.56Ca0.5Fe0.00
75Zn0.0008Cu0.00038Cd0.00021Co0.00019 (Quigg et
al. 2003, Nature 425 291294 Ho et al. 2003, J.
Phycol. 11451159)
Coastal Ocean C2333N21.4P1S28,000K10,000Mg53,500
Ca10,400Fe0. 894Zn0.31Cu0.157Cd?Co0.0017
Supply/Demand C18.8N1.34P1S21,500K5880Mg95,500Ca
20,800Fe119Zn388Cu413Cd?Co8.95
Open Ocean C?N14.5P1S?K?Mg?Ca?Fe0.
079Zn3.12Cu1.01Cd0.346Co11.8
Supply/Demand C?N0.913P1S?K?Mg?Ca?Fe10.5Zn3900Cu
2660Cd1650Co62,100
11
Overall Stoichiometry Structure Stores
µ8
µ, growth rate
Qmin
Q, cell quota
(Droop 1968, Caperon 1968)
12
Overall Stoichiometry Structure Stores
µ8
µ, growth rate
structure
stores
Qmin
Q, cell quota
(Droop 1968, Caperon 1968)
13
Q1) What determines overall stoichiometry
(structure stores)?
14
Nutrient Storage Model
QP
P
B
QN
N
15
Dynamics NPin10 (N-limitation)
biomass
P N
AP
cell NP
time (days)
16
Two Kinds of Chemostat Experiments
  • Goldman experiments fix NP supply and vary
    dilution (growth) rate
  • Rhee experiments fix dilution (growth) rate and
    vary NP supply

17
Goldman Experiments Vary Growth Rate
N-limitation
P-limitation
(Goldman et al. 1979, reprinted from Sterner
Elser 2002)
18
Goldman experimentsFix NPin, vary dilution
(growth rate)
Cell NP (QNQP)
optimal NP Qmin,N/Qmin,P
µ (day-1)
(Klausmeier et al. 2004 LO)
19
Rhee Experiments Vary NP Supply
(Rhee 1974, reprinted from Sterner Elser 2002)
20
Rhee experimentsFix dilution (growth rate),
vary NPin
µ0.59 day-1 (Rhee)
QNQP
Cell NP (QNQP)
NPin
21
Does it work in the field?
Lake Pond Mesocosms
Lakes
NP Ratio of Plants or Seston, mass
NP Supply Ratio, mass
Spencer Hall Indiana University
(Hall et al. Ecology 861894-1904)
22
Does it even work in cultures?!
Algal Cultures
NP Ratio of Plants or Seston, mass
NP Supply Ratio, mass
Spencer Hall Indiana University
(Hall et al. Ecology 861894-1904)
23
Does it even work in cultures?!
Algal Cultures










Rhee 1978

NP Ratio of Plants or Seston, mass



NP Supply Ratio, mass
Spencer Hall Indiana University
(Hall et al. Ecology 861894-1904)
24
Rhee experimentsFix dilution (growth rate),
vary NPin
µ0.59 day-1 (Rhee)
µ0.9 day-1
Cell NP (QNQP)
µ1.05 day-1
NPin
25
Other solutions (Hall et al.)
  • Grazers
  • Interspecific competition
  • Quota-dependent nutrient uptake

26
Quota-dependent uptake
  • Negative feedback of internal store of nutrient
    on uptake of same

vmax
Q
Rhee Gotham 1981, Morel 1987, Andersen 1997
27
A Dynamic Model of Uptake Regulation
AP proportion of uptake dedicated to P
uptake (after Aksnes Egge 1991) AN1-AP Vmax,P
? AP Vmax,N? AN
Klausmeier, Litchman Levin in review
28
Optimal Strategy Leads to Colimitation
AP
NPin
Klausmeier, Litchman Levin in review
29
A Dynamic Model of Uptake Regulation
Klausmeier, Litchman Levin in review
30
Dynamics (c0.001 day-1)
biomass
P N
AP
cell NP
time (days)
31
Dynamics (c0.05 day-1)
biomass
P N
AP
cell NP
time (days)
32
Dynamics (c1.0 day-1)
biomass
P N
AP
cell NP
time (days)
33
Dynamics (c50 day-1)
biomass
P N
AP
cell NP
time (days)
34
Dynamics (c0.05 day-1)
biomass
P N
AP
cell NP
time (days)
35
Does phytoplankton NP match NP supply?
time
Cell NP (QNQP)
NPin
36
Q2) What determines structural stoichiometry
(optimal NP)?
37
Optimal NP Ratios
Redfield
(Klausmeier et al., 2004, Nature 429 171-174)
38
Allocation model
  • Cell is made up of different types of machinery
    and factory walls
  • Uptake robots, Ru per carbon
  • Assembly robots, Ra per carbon
  • Each component has its own NP stoichiometry (Nx,
    Px)
  • Uptake machinery should be N-rich
    (proteins/chloroplasts)
  • Assembly machinery should be N- and P-rich
    (ribosomes)
  • Trade-off between uptake and assembly machinery

(Growth Rate Hypothesis)
Jim Elser Arizona State University
39
Allocation Strategy Determines Model Parameters
(Klausmeier et al., 2004, Nature 429 171-174)
40
How to find an optimal optimal NP
  • During exponential growth, maximize µmax
  • At competitive equilibrium, minimize R for the
    limiting resource

(Klausmeier et al., 2004, Nature 429 171-174)
41
Exponential growth
Light-limitation
I
µmax
N-limitation
P-limitation
N
P
Ra
Ra
(Klausmeier et al., 2004, Nature 429 171-174)
42
Optimal NP Ratios
µmax
Redfield
I
N
P
(Klausmeier et al., 2004, Nature 429 171-174)
43
Phytoplankton N16P1 Ocean N15P1 Interesting
Alfred C. Redfield
44
Q3) Why do phytoplankton and ocean NPs (almost)
match?
45
Redfields ideas
  • Coincidence
  • Plankton adapt to match ocean NP
  • Ocean adapts to match phytoplankton NP

46
Redfields ideas
  • Coincidence
  • Plankton adapt to match ocean NP
  • Ocean adapts to match phytoplankton NP

47
Nature 400 525-531
Mixed layer
N, P
Bfix, Bnon
Deep layer
Nin, Pin
48
N/Pnon16
N
nonfixers win
Nin/Pin
N/Pnon


coex
(Pin,Nin)
time
P
(Schade et al. 2005, Oikos 109 40-51)
49
N/Pnon16
N
nonfixers win
Nin/Pin
N/Pnon


(Pin,Nin)

coex
time
P
(Schade et al. 2005, Oikos 109 40-51)
50
N/Pnon16
N
nonfixers win
Nin/Pin
N/Pnon

(Pin,Nin)



coex
time
P
(Schade et al. 2005, Oikos 109 40-51)
51
N/Pnon16
N
nonfixers win
Nin/Pin

(Pin,Nin)
N/Pnon




coex
time
P
(Schade et al. 2005, Oikos 109 40-51)
52
N/Pnon16
N
nonfixers win

Nin/Pin
(Pin,Nin)


N/Pnon




coex
time
P
(Schade et al. 2005, Oikos 109 40-51)
53
denitrification
N/Pnon16
N
nonfixers win
Nin/Pin

(Pin,Nin)
N/Pnon






coex
time
P
(Schade et al. 2005, Oikos 109 40-51)
54
Two extensions
  • NP of N-fixers barely matters NP of non-fixers
    does

(Lenton Klausmeier in review)
55
N/Pnon48
nonfixers win

N
(Pin,Nin)
Nin/Pin


N/Pnon




coex
time
P
56
Two extensions
  • NP of N-fixers barely matters NP of non-fixers
    does
  • Mechanism still works if N-fixers are excluded
    from large portions of the ocean (Fe- or
    light-limitation)

57
One Wrinkle
(Tyrell 1999)
58
One Wrinkle
(Tyrell 1999)
59
biomass
PS NS
Ns/PS ND/PD
time (years)
60
biomass
PS NS
Ns/PS ND/PD
time (years)
61
Multigroup, Multinutrient Model of Oceanic
Phytoplankton Litchman et al.
Zooplankton
Grazers
Phytoplankton
Diatoms
Coccos
Dinos
Greens
Mixed Layer Depth
Resources
P
Si
Fe
Light
NO3
NH4
  • 0-D model
  • Explicit light gradient
  • Forced by mixed layer depth and irradiance
  • Variable internal stores
  • Liebigs Law of the Minimum

62
Modern Ocean VerificationJGOFS Sites
Ocean Weather Station Papa Shallow MLD, much
less seasonality, abundant Prasinophytes
NABE Deep winter MLD, strong seasonal
successional pattern, spring diatom bloom
www.orbimage.com/ news/img_week/image07.html
63
Modern Ocean Verification
  • Qualitative and quantitative agreement with the
    data
  • presence or absence of certain functional groups
  • seasonal succession and magnitude of blooms
  • nutrient concentrations and drawdown patterns

64
Modern Ocean Verification
North Atlantic Site (NABE)
zoo
NO3-
Chl(mg L-1) Zoo(umol C L-1)
phyto
uM
Si
Day of year
65
Modern Ocean Verification
N. Pacific (Sta. Papa)
zoo
Chl(mg L-1) Zoo(umol C L-1)
Si
uM
phyto
NO3-
Day of year
66
Global Change Scenarios
  • Changes in Mixed Layer Depth Dynamics
  • Changes in N and P in Deep Water
  • Increase in NP (2xN or 1/2xP)
  • Changes in Fe concentration
  • (2xFe or 1/2xFe)

67
Change in Mixed Layer Depth
Global Coupled Atmosphere-Ocean-Ice Model
(Miller and Russell 1997) 150-year simulations,
CO2 increases at 0.5 a year SST increases
N. Atlantic
N. Pacific
future
Depth (m)
future
modern
  • SST 1.5?C (winter), 0.85?C (summer)
  • Shoaling of MLD ca. month later
  • Stratification lasts longer
  • Shallower MLD in summer
  • SST 1.0?C (winter), 0.6?C (summer)
  • Shoaling of MLD earlier
  • Stratification lasts longer
  • Shallower MLD in summer

68
Global Change ScenariosNorth Atlantic (NABE)
69
Global Change ScenariosNorth Pacific (Sta. Papa)
70
  • Klausmeier et al. (2004) make matters even
    more confusing
  • (Leonardos Geider 2004, LO 49 2105-2114)

Supported by NSF Biocomplexity Grants to Simon
Levin and Paul Falkowski Andew Mellon Foundation
Grant to Simon Levin James S McDonnell Foundation
Grant to C. Klausmeier NSF Grants to C.
Klausmeier E. Litchman
71
Dynamics (c0 day-1)
biomass
P N
AP
cell NP
time (days)
72
Dynamics (c0.1 day-1)
biomass
P N
AP
cell NP
time (days)
73
Dynamics (c10 day-1)
biomass
P N
AP
cell NP
time (days)
74
Dynamics (c1000 day-1)
biomass
P N
AP
cell NP
time (days)
75
Competition in a pulsed environment

2 wins
-
-
log cinv
log c2
1 wins
1 wins

2 wins
log cres
log c1
Write a Comment
User Comments (0)
About PowerShow.com