Title: Quine-McCluskey Method
1Quine-McCluskey Method
- ECE-331, Digital Design
- Dr. Ron Hayne
- Electrical and Computer Engineering
2Quine-McCluskey Minimization
- wrt to minimization, K-maps Only good for
- Small functions (lt5variables)
- Single output function at a time
- Not Implementable on Computer
- Subjective Interpretation, Different Coverings
- Q-M (Tabular Minimization) Solves These Problems
3Basic Definitions
- Prime Implicant
- A group of adjacent 1s that is not contained
within any larger implicant - Essential Prime Implicant
- A prime implicant which includes a minterm that
is covered by only one Prime Implicant
4Basic Definitions
- Complete Sum
- A representation of a function by the sum of ALL
possible prime implicants - Not necessarily irredundant
- Irredundant Sum
- The representation of a function by A sum of PIs
such that the removal of any one of the PIs
changes the value of the function for some
combination of input values
5Basic Definitions
- Cost Function
- A measure of the effort or hardware associated
with the implementation of something or the
accomplishment of a task - Digital Design Cost Functions
- Number of terms
- Number of occurrences of a literal (not the
number of distinct literals).
6Quine-McCluskey Method
- Construct the Implicant Table
- Group minterms by number of 1s
- Apply Adjacency Theorem to pairs of implicants
- Mark all implicants that are used in larger groups
7Q-M Example
Karim-Johnson, p. 59
8Step 1a Implicant Table
Size Minterms
0 0
1 2 8
2 3 5 10
3 7 13
4 15
9Step 1b,c Adjacency Theorem
Size Minterms One-Cube
0 0 0,2 (2) 0,8 (8)
1 2 8
2 3 5 10
3 7 13
4 15
10Step 1b,c Adjacency Theorem
Size Minterms One-Cube
0 0 0,2 (2) 0,8 (8)
1 2 8 2,3 (1) 2,10 (8) 8,10 (2)
2 3 5 10 3,7 (4) 5,7 (2) 5,13 (8)
3 7 13 7,15 (8) 13,15 (2)
4 15
11Step 1b,c Adjacency Theorem
Size Minterms One-Cube Two-Cube
0 0 0,2 (2) 0,8 (8) 0,2,8,10 (2,8)
1 2 8 2,3 (1) 2,10 (8) 8,10 (2)
2 3 5 10 3,7 (4) 5,7 (2) 5,13 (8) 5,7,13,15 (2,8)
3 7 13 7,15 (8) 13,15 (2)
4 15
12Quine-McCluskey Method
- Construct the Covering Table
- Prime Implicants and Minterms
- Mark rows and columns
- Identify Essential Prime Implicants
- Construct the Reduced Covering Table
- Secondary Prime Implicants
- Mark rows and columns
- Minimum cover for remaining minterms
- Simplified Logic Expression
13Step 2a Covering Table
Prime Implicants Minterms 0 2 3 5 7 8 10 13 15
0,2,8,10 (2,8) 5,7,13,15 (2,8)
2,3 (1) 3,7 (4)
14Step 2b Covering Table
Prime Implicants Minterms 0 2 3 5 7 8 10 13 15
0,2,8,10 (2,8) 5,7,13,15 (2,8) X X X X X X X X
2,3 (1) 3,7 (4) X X X X
152c Essential Prime Implicants
Prime Implicants Minterms 0 2 3 5 7 8 10 13 15
0,2,8,10 (2,8) 5,7,13,15 (2,8) X X X X X X X X
2,3 (1) 3,7 (4) X X X X
16Step 2c Covering Table
Prime Implicants v v v v v v v v 0 2 3 5 7 8 10 13 15
0,2,8,10 (2,8) 5,7,13,15 (2,8) X X X X X X X X
2,3 (1) 3,7 (4) X X X X
173a,b Reduced Covering Table
Prime Implicants Minterms 3
2,3 (1) 3,7 (4) X X
183c Reduced Covering Table
Prime Implicants Minterms 3
2,3 (1) 3,7 (4) X X
194 Simplified Logic Expression
20Summary
- Q-M
- Implicant Table
- Covering Table
- Essential Prime Implicants
- Simplified Logic Expression