Ordinal Models - PowerPoint PPT Presentation

1 / 29
About This Presentation
Title:

Ordinal Models

Description:

Examining the effect of time invariant covariates on class membership ... foreach var of varlist bedwet_m bedwet_p [...] toilet { tab `var' if class==1 ... – PowerPoint PPT presentation

Number of Views:62
Avg rating:3.0/5.0
Slides: 30
Provided by: jonh5
Category:
Tags: models | ordinal

less

Transcript and Presenter's Notes

Title: Ordinal Models


1
Ordinal Models
2
Ordinal Models
  • Estimating gender-specific LLCA with repeated
    ordinal data
  • Examining the effect of time invariant covariates
    on class membership
  • The effect of class membership on a later outcome

3
The data
  • 5 repeated measures of bedwetting
  • 4½, 5½, 6½ ,7½ 9½ yrs
  • 3-level ordinal
  • Dry
  • Infrequent wetting (lt 2 nights/week)
  • Frequent wetting (2 nights/week)

4
4 time point ordinal LLCA (Boys)
  • title 4 time point LLCA of ordinal bedwetting
  • data file is 'C\Work\bedwet_dsm4_llca\spss\llc
    a_dsm4.txt'
  • listwise is ON
  • variable
  • names ID sex
  • nwet_kk2 nwet_kk3 nwet_kk4 nwet_kk5
  • nwet_km2 nwet_km3 nwet_km4 nwet_km5
  • nwet_kp2 nwet_kp3 nwet_kp4 nwet_kp5
  • nwet_kr2 nwet_kr3 nwet_kr4 nwet_kr5
  • nwet_ku2 nwet_ku3 nwet_ku4 nwet_ku5
  • categorical nwet_kk3 nwet_km3 nwet_kp3
    nwet_kr3 nwet_ku3
  • usevariables nwet_kk3 nwet_km3 nwet_kp3
    nwet_kr3 nwet_ku3
  • missing are nwet_kk3 nwet_km3 nwet_kp3
    nwet_kr3 nwet_ku3 (999)
  • classes c (4)

5
RESULTS IN PROBABILITY SCALE
  • Latent Class 1
  • NWET_KK3
  • Category 1 0.190 0.030
    6.430 0.000
  • Category 2 0.672 0.033
    20.134 0.000
  • Category 3 0.138 0.026
    5.409 0.000
  • NWET_KM3
  • Category 1 0.224 0.038
    5.929 0.000
  • Category 2 0.727 0.036
    20.254 0.000
  • Category 3 0.048 0.019
    2.533 0.011
  • NWET_KP3
  • Category 1 0.160 0.045
    3.540 0.000
  • Category 2 0.823 0.044
    18.613 0.000
  • Category 3 0.017 0.011
    1.473 0.141
  • NWET_KR3
  • Category 1 0.075 0.064
    1.178 0.239
  • Category 2 0.903 0.061
    14.686 0.000
  • Category 3 0.022 0.011
    1.929 0.054
  • NWET_KU3

6
RESULTS IN PROBABILITY SCALE
  • Latent Class 1
  • NWET_KK3
  • Category 1 0.190 0.030
    6.430 0.000
  • Category 2 0.672 0.033
    20.134 0.000
  • Category 3 0.138 0.026
    5.409 0.000
  • NWET_KM3
  • Category 1 0.224 0.038
    5.929 0.000
  • Category 2 0.727 0.036
    20.254 0.000
  • Category 3 0.048 0.019
    2.533 0.011
  • NWET_KP3
  • Category 1 0.160 0.045
    3.540 0.000
  • Category 2 0.823 0.044
    18.613 0.000
  • Category 3 0.017 0.011
    1.473 0.141
  • NWET_KR3
  • Category 1 0.075 0.064
    1.178 0.239
  • Category 2 0.903 0.061
    14.686 0.000
  • Category 3 0.022 0.011
    1.929 0.054
  • NWET_KU3

Dry
Infrequent wetting
Frequent wetting
7
Alternative 1 three dimensions
  • A 3D plot

or something made out of plasticine
8
Alternative 2 two figures
Infrequent bedwetting
Frequent bedwetting
9
Alternative 3 two figures
Any bedwetting
Frequent bedwetting
10
Alternative 3 two figures
Any bedwetting
Frequent bedwetting
(1) A persistent wetting group who mostly wet to
a frequent level (2) A persistent wetting group
who mostly wet to an infrequent level (3) A
delayed group comprising mainly infrequent
wetters (4) Normative group
11
Fit statistics - Boys
12
5-class model (boys)
Any bedwetting
Frequent bedwetting
13
5-class model (boys)
  • Normative (63.8)
  • Mild risk of infrequent wetting at start which
    soon disappears
  • Delayed-infrequent (18.2)
  • Delayed attainment of nighttime bladder control
    but rarely attains frequent levels
  • Persistent-infrequent (11.4)
  • Persistent throughout period but rarely attains
    frequent levels
  • Persistent-frequent (4.0)
  • Persistently and frequently until late into
    period. Appears to be turning into lower
    frequency wetting however over 80 are still
    wetting to some degree at 9.5yr
  • Delayed-frequent (2.7)
  • Frequent wetting until half-way through time
    period, reducing to a lower level of wetting
    which appears to be clearing up by 9.5yr

14
Fit statistics Girls Oh!
15
Fit statistics Girls Oh!
16
6-class model (girls)
Any bedwetting
Frequent bedwetting
17
6-class model (girls)
  • Normative (78.6)
  • Delayed-infrequent (11.7)
  • Persistent-infrequent (4.6)
  • Persistent-frequent (1.6)
  • Delayed-frequent (1.3)
  • Relapse (2.0)
  • Initial period of dryness followed by a return to
    infrequent wetting

18
Incorporating covariates
  • 2-stage method
  • Export class probabilities to another package
    Stata
  • Model class membership as a multinomial model
    with probability weighting
  • Using classes derived from repeated BW measures
    with partially missing data (gloss over)

19
Multinomial models (boys)
  • label values class class_label
  • label define class_label ///
  • 1 "Pers INF 1" ///
  • 2 "DelayFRQ 2" ///
  • 3 "Normal 3" ///
  • 4 "Pers FRQ 4" ///
  • 5 "DelayINF 5", add
  • tab class
  • foreach var of varlist bedwet_m bedwet_p
    toilet
  • tab var' if class1
  • xi mlogit class var' iw boy_weights, rrr
  • test var'

20
Typical output
  • Multinomial logistic regression
    Number of obs 5004

  • LR chi2(4) 85.09

  • Prob gt chi2 0.0000
  • Log likelihood -5256.9295
    Pseudo R2 0.0080
  • --------------------------------------------------
    ----------------------------
  • class RRR Std. Err. z
    Pgtz 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • Pers INF 1
  • bedwet_m 2.456404 .3459902 6.38
    0.000 1.863829 3.237378
  • -------------------------------------------------
    ----------------------------
  • DelayFRQ 2
  • bedwet_m 3.019243 .6958002 4.79
    0.000 1.921915 4.743095
  • -------------------------------------------------
    ----------------------------
  • Pers FRQ 4
  • bedwet_m 3.795014 .6783016 7.46
    0.000 2.673461 5.387073
  • -------------------------------------------------
    ----------------------------
  • DelayINF 5
  • bedwet_m 1.540813 .2046864 3.25
    0.001 1.18761 1.999062

21
Selection of covariates (boys)
22
What if we had used modal-class?
  • The further the posterior probabilities for class
    assignment are from 1 (i.e. the lower the
    entropy) the poorer the estimates from a model
    using the modal class
  • In this example (partial missing data)
  • entropy 0.788
  • 1 2 3 4 5
  • 1 0.800 0.011 0.017 0.020 0.153
  • 2 0.063 0.804 0.000 0.069 0.064
  • 3 0.008 0.001 0.923 0.000 0.068
  • 4 0.049 0.104 0.004 0.813 0.030
  • 5 0.110 0.009 0.170 0.006 0.706

23
Estimates using mod class
Bias depends on class and also covariate
24
A later outcome
  • Boys data
  • Outcomes
  • Key Stage 3 at 13-14 yrs
  • Achieved level 5 or greater in English/Sci/Maths
  • English failed 1210 (27.9)
  • Science failed 895 (20.6)
  • Maths failed 845 (19.5)

25
2 stage procedure - Stata
  • label values class class_label
  • label define class_label ///
  • 1 "Pers INF 1" ///
  • 2 "DelayFRQ 2" ///
  • 3 "Normal 3" ///
  • 4 "Pers FRQ 4" ///
  • 5 "DelayINF 5", add
  • recode class 30
  • foreach var of varlist maths science english
  • tab var' if class1
  • xi logit var' i.class iw b_par_p, or
  • test _Iclass_2 _Iclass_3 _Iclass_4 _Iclass_5

26
KS3 - English
  • Logistic regression
    Number of obs 4341

  • LR chi2(4) 7.73

  • Prob gt chi2 0.1018
  • Log likelihood -2564.536
    Pseudo R2 0.0015
  • --------------------------------------------------
    ----------------------------
  • k3_lev5e Odds Ratio Std. Err. z
    Pgtz 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • Pers INF .9896705 .1131557 -0.09
    0.928 .7909827 1.238267
  • Delay FRQ .8946308 .1964416 -0.51
    0.612 .5817527 1.375781
  • Pers FRQ 1.474409 .2323757 2.46
    0.014 1.082589 2.008041
  • Delay INF .9135896 .0852754 -0.97
    0.333 .76085 1.096991
  • --------------------------------------------------
    ----------------------------
  • ( 1) _Iclass_1 0
  • ( 2) _Iclass_2 0
  • ( 3) _Iclass_4 0
  • ( 4) _Iclass_5 0

27
KS3 - Maths
  • Logistic regression
    Number of obs 4341

  • LR chi2(4) 11.29

  • Prob gt chi2 0.0235
  • Log likelihood -2133.6412
    Pseudo R2 0.0026
  • --------------------------------------------------
    ----------------------------
  • k3_lev5m Odds Ratio Std. Err. z
    Pgtz 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • Pers INF .9460608 .1241854 -0.42
    0.673 .7314512 1.223637
  • Delay FRQ .9601245 .2358923 -0.17
    0.868 .5931937 1.554027
  • Pers FRQ 1.688991 .2836716 3.12
    0.002 1.215249 2.347413
  • Delay INF .8976914 .095965 -1.01
    0.313 .7280008 1.106935
  • --------------------------------------------------
    ----------------------------
  • ( 1) _Iclass_1 0
  • ( 2) _Iclass_2 0
  • ( 3) _Iclass_4 0
  • ( 4) _Iclass_5 0

28
KS3 - Science
  • Logistic regression
    Number of obs 4341

  • LR chi2(4) 8.94

  • Prob gt chi2 0.0626
  • Log likelihood -2203.9946
    Pseudo R2 0.0020
  • --------------------------------------------------
    ----------------------------
  • k3_lev5s Odds Ratio Std. Err. z
    Pgtz 95 Conf. Interval
  • -------------------------------------------------
    ----------------------------
  • Pers INF .8913295 .1159146 -0.88
    0.376 .6907838 1.150097
  • Delay FRQ 1.067237 .2482602 0.28
    0.780 .6764799 1.683709
  • Pers FRQ 1.525329 .2566845 2.51
    0.012 1.096786 2.121314
  • Delay INF .8888344 .092835 -1.13
    0.259 .7242967 1.09075
  • --------------------------------------------------
    ----------------------------
  • ( 1) _Iclass_1 0
  • ( 2) _Iclass_2 0
  • ( 3) _Iclass_4 0
  • ( 4) _Iclass_5 0

29
Summary
  • Fitting ordinal models is similar to binary data
    however results (trajectories) are harder to
    interpret graphically
  • Resulting classes can be used either as outcomes
    or categorical predictors using weighted
    regression in Stata
  • Using variables derived from modal class
    assignment can often introduce very biased
    estimates
Write a Comment
User Comments (0)
About PowerShow.com