Title: Apresenta
1BRAZIL POTENCIAL OF CARBON SEQUESTRATION IN
CROPLANDS
III USDA Symposium on Greenhouse Gases Carbon
Sequestration ... Baltimore - USA
2(No Transcript)
3 Cimélio Bayer E-mail cimelio.bayer_at_ufrgs.br
Telmo J. C. Amado E-mail tamado_at_smail.ufsm.br
4(No Transcript)
5Main Brazilian Soil characteristics
- 70 kaolinitic
- Fe and Al oxides
Low activity clay
pH variable charge
High acidity, Aluminium, low basis saturation
Source Sá ,2004
6Weather
Rate of biologic reactions
Erosivity index
Biomass
production
7Soil Carbon pool
Source C. Cerri et al., 2003
0-30 cm
10 of soil C world
8CO2 Emission of Brazilian soils
Emission for State Gg CO2.ano -1
Average annual flux in Mt de CO2 for the period
of 1975-1995
46 Mt CO2 year -1
Mt Million de toneladas
Source C. Cerri et al., 2003
9Pools and emissions
More details
Brazils soil carbon stocks Soil Science Society
of America Journal 2001, 2002
CO2 fluxes from mineral soil carbon stocks
variations related to land-use change in
Brazil Global Change Biology 2001
CO2 emissions from liming of agricultural soils
in Brazil Global Biogeochemical Cycle, 2003
Source C. Cerri et al., 2003
10The forest...
Source Nobre, 2002
11Source Nobre, 2002
12Deforestation...
Source Nobre, 2002
13- Population Growth and Land Use Change
- modern occupation of Amazonia (since 1500)
negligible land use change up to the 1960's, but
large loss of ethnic diversity due to
colonization - large land use change in the last 30 years
- close to 600,000 km2 deforested in Brazilian
Amazonia (15) - high annual rates of deforestation (15,000 to
30,000 km2/year)
Source Nobre, 2002
14Fire...
Source Nobre, 2002
15Fire...
Source Nobre, 2002
16CASE
100 years of fire
65 Clay
Source Spagnollo, 2003
17TOC 50 events of burn X 36 years without burn
TOC, Mg ha-1
7
8
9
10
11
12
13
0
Burn
6,5 Mg ha-1
2
21
4
36 years without burn
Depth , cm
6
8
Source Spagnollo, 2003
10
18Fire effect on Organic Carbon Pool
Fração gt 53
mm
0 5 cm
12
9
6
34
22
3
0
Grassland without fire
Grassland with fire
Soil management
Source Spagnollo, 2003
19Carbon lose due to soil tillage
Source Sá, 2004
20(No Transcript)
21Bare soil 10 years lose 33 TOC Pool 0-20 cm
depth mainly due erosion (15 clay)
Source Amado Debarba, 1999
2210 Years
3.5 year-1
Sá et al., 2001 (PR-BR)
23BRAZILIAN NO-TILL
Source Sá, 2004
24Evolution of no-till in Brazil
20.0
ha (millions)
2.0
0.26
2004
Year
Source FEBRAPDP, 2004
25No-till in Small Farm
26New equipments for Small Farm No-Till
Source Derpsch, 2003
27Evolution of no-till in Rio Grande do Sul
100
CT
80
RT
NT
Area ()
60
40
20
0
1979
1994
2000
Years
Source Mielniczuk et al., 2003
28Evolution of SOM
1988
1999
80
64,1
60
53,6
40,5
Soil Samples
40
29,7
20
5,9
6,2
0
Low
High
Medium
SOM
Fonte Rheinheimer, D.S. et al. 2000 - UFSM.
29term experiments (10 to 25 years) Lessons
Long
Cerrado Region
From 1999
Cerrado Region
From 1999
(Tropical soils)
Half
-
life SOM3
-
4 yr
(Tropical soils)
Half
-
life SOM3
-
4 yr
From 1988
From 1988
South Region
South Region
(Subtropical soils)
(Subtropical soils)
Half
-
life SOM10
-
15 yr
Half
-
life SOM10
-
15 yr
Source Bayer, 2004
30- Sub-tropical and tropical
- gt Temperature gt decomposition rate of SOM gt
loss of C - Microaggregation x (Fe, Al) Macroaggretion x
MOS)
Source Sá, 2004
315
Conventional tillage
No-till
4
3
Rate of SOM decomposition ()
2
1
0
Paleudalf
Hapludox
Soil Type
Source. Bayer et al., 2000
32Paleudalf 15 years
3
TOC (kg/m
)
0
15
20
25
30
35
40
0
CT A/M
)
NT AV/MC
5
-1
36
NT
10
AV/MC
33
12 t C/ha
TOC 0-17,5 cm (Mg ha
15
Depth (cm)
30
CT
A/M
20
27
25
0
2
4
6
8
10
12
14
Years
30
Source. Bayer et al., 2003
33Paleudalf 15 years
Source Mielniczuk et al. (2003)
34The importance of Nitrogen in Carbon Sequestration
35Without N
2000
Emission
1500
With N
1000
No-tillage
500
Black oat vetch/maizecowpea
0
Net C-CO2, kg ha-1 ano-1
Conventional Tillage
-500
Black oat/maize
-1000
Sequestration
-1500
Without N
-2000
With N
Source Lovato, 2001
36The role of legumes CC in Carbon sequestration
37Source Conceição et al., 2005
38(No Transcript)
39Source Conceição et al., 2005
405 Mg MS ha-1
410.5
Source Bayer, 2004
42No-Till Carbon sequestration potential
Source Sá et al., 2004
43(No Transcript)
44Mineral N fertilization CO2 cost
- Cost in CO2 to produce the fertilizer
- 1,4 mol CO2 / mol N (Schlesinger, 2000)
- Increase N2O emission
- 0,07-0,5 (Eichner, 1990) 1,25 N
(IPCC, 1996)
(13 anos, A/M) ? C
CT 0 N 25,87 t C/ha - NT
0 N 32,63 t C/ha 6,76
6,76 NT 139 N 34,84 t C/ha
8,97 6,73
Cost in CO2 13 anos x 139 kg N/ha/ano x 86 kg
C/100 kg N/ha 1,55 t C/ha
Cost in N2O 0,3 de (139 kg N/ha/ano x 13
anos ) x 126,9 0,69 t
C/ha 8,97 (1,55 0,69) 6,73
Source Lovato et al. (2004)
45 Total flux of N2O (45 days after CC management)
N
O (
m
g N. m
-
2
)
N
O (
m
g N. m
-
2
)
N
O (
m
g N. m
-
2
)
N
O (
m
g N. m
-
2
)
2
2
2
Crop system
2
45 dias
45 dias
45 dias
45 dias
268
A/M
268
A/M
268
A/M
268
A/M
NT
293
293
293
293
CT
999
E/M
999
E/M
NT
999
E/M
999
E/M
CT
1241
1241
1241
1241
NT
Source Gomes et al., 2004
46 3,0
a
a
Convencional
2,5
)
-1
Plantio Direto
h
2,0
-1
b
a
(kg ha
ns
1,5
b
a
2
ns
ns
b
1,0
b
C-CO
0,5
Chamber I
Câmara
I
Câmara
II
0,0
0
4
12
0
4
12
24
48
72
)
Tempo (horas)
C-CO2 Flux
Source Benhur, 2005
47CO2 Flux X Soil moisture and Soil temp.
Source Falberni et al., 2004
48C-CO2 Flux
TOC soil Pool
CT
NT
Soil Management
Source Falberni et al., 2004
49Thank you !!