IT : 50 Years Later ... - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

IT : 50 Years Later ...

Description:

A Mathematical Theory of Communication. Bell Systems Technical Journal. http: ... Probabilistic Methods on Communication Systems. Mathematical Theory of Entropy ... – PowerPoint PPT presentation

Number of Views:27
Avg rating:3.0/5.0
Slides: 23
Provided by: texasinstt
Category:
Tags: later | years

less

Transcript and Presenter's Notes

Title: IT : 50 Years Later ...


1
IT 50 Years Later ...
Professor Foto Afrati Dr. Despina
Polemi
National Technical Uni. of Athens (NTUA)
ICCS-NTUA
2
Claude Shannon (1948)
  • A Mathematical Theory of Communication
  • Bell Systems Technical
    Journal
  • http//cm.bell-labs.com
    /
  • Probabilistic Methods on Communication Systems
  • Mathematical Theory of Entropy
  • Statistical Characteristics of Data and
    Communication Systems

3
ENTROPY as a measure of
  • unpredictability
  • uncertainty
  • incompressibility
  • asymmetry
  • delayed recurrence

4
ENTROPY a mathematical concept
  • the number of typical sequences of a given length
  • the recurrence of blocks of symbols (patterns) in
    a single typical sequence
  • Entropy Estimation, Data Compression,
    Classification

5
ENTROPY in an example
  • Q A monkey types a single Latin letter every
    second. How long on average will it take to type
    CLAUDESHANNON ?
  • A
  • 13 13 log 26 l H
  • 26 2 2
  • H log 26 entropy of monkeys data
    sequence

6
ENTROPY in an example
  • Q We observe N characters in a text of a 16th
    century author. We want to determine if this
    unknown author is Shakespeare. What is the
    minimum N?
  • A
  • l ( He)
  • N gt 2
  • H the entropy of the source that produces the
    text of the unknown author

7
ENTROPY in pure and applied math
  • Combinatorics
  • Ergodic Theory
  • Algebra
  • Operations Research
  • Systems Theory
  • Probability
  • Statistics

8
IT a tool in
  • Coding Theory and Cryptology
  • Ergodic Theory and Dynamical Systems
  • Statistical Inference and Prediction
  • The Physical Sciences
  • Economics, Biology
  • Humanities and Social Sciences
  • Logic and the Theory of Algorithms

9
Logic and Theory of Algorithms
  • Kolmogorov Complexity
  • Algorithmic Entropy
  • Algorithmic Complexity of a Finite String
  • A measure of the smallest program that outputs
    the finite string
  • incompressible strings of any length
  • lower bounds on computational complexity

10
Logic and Theory of Algorithms
  • Algorithmic IT
  • Incompleteness Theorem of Kurt Goedel
  • Limits of Mathematics
  • Axiomatic Systems in Artificial Intelligence

11
  • ltlt The hard core of IT is, essentially, a branch
    of mathematics gtgt
  • ltlt A thorough understanding of the mathematical
    foundation ...is surely a prerequisite to other
    applications gtgt

  • Claude Shannon

12
Shannons Challenges
  • CODING THEORY
  • (1948)
  • A Math. Theory of Com.
  • Construct good codes
  • CRYPTOGRAPHY
  • (1949)
  • Com. Theory of secrecy systems
  • Construct secure cryprosystems

13
Coding and Cryptography
  • Shannons Theorems
  • (entropy, key equivocation)
  • Mutual Influence
  • (design, applications)
  • Evaluative Criteria
  • (math.problem, measures, parameters, speed,
    storage, implementations)
  • Mathematical Tools

14
Common Mathematical Tools
  • finite fields
  • complexity theory
  • algebraic geometry
  • combinatorics
  • sequences
  • comput.math.
  • group theory
  • BAN Logic
  • finite state machines
  • exponential sums
  • dynamical systems
  • graph theory
  • theory of algorithms

15
Historical Breakthroughs in Coding Theory
1961 Mattson Solomon 1962 MacWilliams 1962
Massey 1967 Viterbi 1969 Massey 1970 V.D.
Goppa 1973 Delsarte 1978 Lempel-Ziv
  • 1948 Shannon
  • 1950 Hamming
  • 1954 Golay
  • 1954 Reed-Muller
  • 1959 Hocquenghem
  • 1960 Bose Ray
  • Chaudhuri
  • 1960 Reed Solomon

16
Recent Breakthroughs
  • 1981 V.D. Goppa
  • 1982 Tsfasman
  • Vladut Zink
  • 1982 Ungerboek
  • 1992 Moreno-Moreno
  • 1993 Berrou

1994 Hammons Kumar Calderbank Sloane
Sole 1996 Conway Sloane Forney Vardy 1997
Calderbank Sloane Forney
1995-1998 Sakata Jensen Hoholdt Justesen Feng
Rao
17
From Theory to Practice
  • convolutional (additive white gaussian)
  • block codes (non additive nongaussian)
  • RS (compact disks, space communication)
  • Trellis (space communication)
  • Spectral Null (recording devices)
  • PUM (magnetic optical recording)
  • Line (optical fiber systems)
  • First Order Reed-Muller (range finding,
    synchronising, modulation, scrambling)
  • Turbo (CODECS)

18
Milestones in Cryptography
  • 1949 Shannon
  • 1949-1967...
  • 1967 Kahn
  • 1970 Ellis
  • 1974 Feistel
  • 1974 Gilbert
  • 1974 Merkle
  • 1976 Diffie Hellman
  • 1977 NBS

1977 Merkle Hellman 1977 Rivest Shamir
Adleman 1982 Goldwasser Micali 1985 Koblitz
Miller 1990 Bennet Brassard 1990 Biham
Shamir 1991 Zimmermann 1992 Lai-Massey 1993
Mitsui 1994 Shor
19
Cryptography The Security Foundation
  • Multicasting
  • Mobile Communications
  • Smart Card Technol.
  • Electronic Payment Systems
  • Internet

20
Cryptography on the WWW
Internet
21
Crypto Tools on the WWW
  • Firewall Technol.
  • Session Security
  • (SSL, S-HTTP,PCT)
  • Mail Security
  • (S/MIME, PEM, PGP)
  • Ecommerce protocols
  • (SET, C-SET, Globe-ID)
  • Web technologies
  • (Java, Active-X,Plug-Ins, Agents)

Trustworthy Key Management Systems Trusted
Third Party Services
22
Challenges of the Nineties
  • Multi-user communication
  • Efficient Compression Encryption Schemes for
    High Speed Networks
  • Advanced Modulation coding for Mobile Web
    browsing
  • Secure, optimise, converge Web applications/techno
    logies
Write a Comment
User Comments (0)
About PowerShow.com