Orthogonal Transfer Arrays An Overview - PowerPoint PPT Presentation

1 / 15
About This Presentation
Title:

Orthogonal Transfer Arrays An Overview

Description:

University of Arizona / Imaging Technology Laboratory (Lesser) ... Oxidize. Chemisorption charge. Antireflection coat. Package. Characterize ... – PowerPoint PPT presentation

Number of Views:42
Avg rating:3.0/5.0
Slides: 16
Provided by: drrichardb
Category:

less

Transcript and Presenter's Notes

Title: Orthogonal Transfer Arrays An Overview


1
Orthogonal Transfer ArraysAn Overview
  • A collaborative effort between
  • MIT Lincoln Laboratory (Burke)
  • Semiconductor Technology Associates (Bredthauer)
  • University of Hawaii / PanSTARRS (Tonry, Luppino)
  • WIYN Observatory (Jacoby)
  • University of Arizona / Imaging Technology
    Laboratory (Lesser)

2
Orthogonal Transfer Array (OTA)
OTCCD pixel structure
OTA 8x8 array of OTCCDs
Basic OTCCD cell
3
Summary of OTA Properties
  • 64 independent 500 x 500 CCDs
  • Individual addressing of CCDs
  • 1 arcmin field of view
  • Bad columns confined to cells
  • Point defects are tolerated
  • A 4K x 4K imager
  • Cells with bright stars ? guiders, read at 10-50
    Hz
  • 8 channels / OTA 2s readout
  • Intercell gaps (0.1-0.3 mm 1-3) and dead cells
    on OTA are dithered away
  • Inter-OTA spacings 2 mm (20)

5cm
12 um pixels 0.11 at WIYN
4
OPTIC The OTAs Ancestor
  • Planet transit
  • 0.3s samples binned to 60s
  • Relative accuracy of 6E-4 mag
  • Approaching HST (1E-4)
  • CCD Format
  • 2 2Kx4K OT CCDs
  • 4 high-speed read zones
  • 4 science zones

5
Nominal OTA-CCD Configuration
6
Target OTA CCD Performance
7
CCD Amplifier Configuration
  • 2-Stage source follower output
  • Standard Configuration can operate at gt 10Mhz
  • Used on a variety of devices
  • KEPLER
  • FAME

8
Pinout Configuration
Right side
Left side
9
CCD Array Configuration
49.48 mm
  • 8x8 Array of elements
  • 480x494 Subcells allow for increased bussing area
  • 336?m x 132?m streets to allow for bussing
    (exactly 28 x 11 pixels)

10
Wafer Configuration
  • 3 OTAs
  • 1 2.6K x 4K 12?m (standard imager)
  • 2 1K x 2K for USNO (special imager)
  • 1 800 x 1200 (standard imager)
  • Numerous small test devices

11
Quantum Efficiency
  • Target 30?m thick epi layer (500 ohm-cm) silicon
    provides good red QE
  • High resistivity also allows for deep depletion
    at nominal voltages
  • AR Coatings can be tuned by ITL/Lesser for blue
    vs red

12
CCD Spatial Response
  • MTF maintained by high resistivity epi-material
  • Can achieve adequate depletion with 10V bias
  • Deep depletion improves blue MTF for backside
    illumination

13
Fabrication Status
  • Dividing wafer run into 3 silicon groups guards
    against silicon flaws
  • 8 wafers of 40 ohm-cm material
  • 8 wafers of 150 ohm-cm material
  • 8 wafers of 500 ohm-cm material
  • Production just beginning 10 week fabrication
    time ? first wafers in early February
  • Wafer level testing in February (STA) and March
    (ITL)
  • Package (ITL) 1 thin and 1 thick OTA in April for
    lab and on-sky testing at WIYN.

14
ITL Backside CCD Processing
  • Select via cold wafer tests
  • Mechanically lap
  • Dice
  • Hybridize
  • Wax protection of edges
  • Selective etch
  • Epitaxial etch
  • Oxidize
  • Chemisorption charge
  • Antireflection coat
  • Package
  • Characterize

15
WIYN Science Interests
  • Solar neighborhood populations parallaxes,
    proper motions, planets
  • Open and Globular cluster populations white
    dwarfs, variable stars, planets
  • Local Group tidal streams, variable stars,
    stellar populations
  • Galaxies irregular and dwarf spheroidals, star
    formation rates
  • Cosmology SN Ia, High-z Ly? sources
Write a Comment
User Comments (0)
About PowerShow.com