Simplified Transistor - Transistor Logic (TTL) - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Simplified Transistor - Transistor Logic (TTL)

Description:

Simplified Transistor - Transistor Logic (TTL) Transistor - Transistor Logic (TTL) Simplified form of inverter Two instead of four transistors – PowerPoint PPT presentation

Number of Views:151
Avg rating:3.0/5.0
Slides: 17
Provided by: KenRo7
Learn more at: https://eecs.ceas.uc.edu
Category:

less

Transcript and Presenter's Notes

Title: Simplified Transistor - Transistor Logic (TTL)


1
Simplified Transistor - Transistor Logic (TTL)
  • Transistor - Transistor Logic (TTL)
  • Simplified form of inverter
  • Two instead of four transistors
  • Two instead of four resistors
  • For low vi input, output vo is high
  • Q1 is on (saturation).
  • Q3 is off (cutoff).
  • So vo VCC - iC RC VCC
  • For high vi input, output vo is low
  • Q1 is off (inverse mode).
  • Q3 is on (saturation).
  • So vo VCC - iC3 RC is small.
  • Q3 driven into saturation region so vo
    VCE,sat 0.2V.

iR

vo
vi
2
Simplified Transistor - Transistor Logic (TTL)
  • Assumptions for analysis
  • All transistors are npn and identical.
  • For p-n junctions in transistors to be
    conducting current,
  • VBE or VBC must be 0.7V or higher.
  • For smaller junction voltages, current flow
    is negligibly small.
  • For transistors in forward active mode,
  • iC ß iB,
  • VBE,active 0.7 V
  • For transistors in forward saturation mode,
  • VBE,sat 0.8 V.
  • VCE,sat 0.2 V.
  • iC lt ß iB or iC / iB lt ß.
  • For transistors in inverse mode
    (E junction reverse biased, C junction
    forward biased),
  • current gain is very small
  • iE ßr iB
  • ßr is very small, e.g. ßr 0.02

vo
vi
3
Simplified Transistor - Transistor Logic (TTL)
Low Input, High Output
Load inverter
  • For low vi input, output vo is high
  • Q3 of driving inverter is in saturation
    so vo VCE,sat 0.2
    V vi of Q1
  • Transistor Q1 (Load Inverter)
  • E jcn forward biased (VBE1 0.7 V ).
  • C jcn only weakly forward biased (VBC1 ?
    ).
  • Q1 in saturation (VCE1 VCB1 VBE1 -VBC1
    VBE1 -0.45V 0.7V 0.25V) and iC1 lt ß
    iB1.
  • Transistor Q3 (Load Inverter)
  • How do we find VBC1?
  • VB1 VBC1 VBE3 0.9 V
  • Assuming VBC1 VBE3 , then both 0.45 V
  • So E jcn of Q3 forward biased, but not
    enough so iB3 0 and Q3 is off (iC3 0).
  • RC iC3 0 and vo VCC 5 V.
  • Current iR flows through R and out the
    input
  • Size of iR? iR (VCC - VB1 )/R
    (5 V - 0.9 V)/4K1 mA
  • Where does it go?
  • Virtually all of the current flows out
    emitter of Q1 , iR iE1 1mA
  • This current flows into the collector of
    Q3. of the drive inverter (out the input).

VCC 5V
VCC 5V
VB1 0.7V0.2V 0.9V
iR
Driving inverter
R4K
.
VBE1 0.7V

p

n

VBC1
vo
p

n
n

VBE3
iC1

iE1
n
voVCE,sat 0.2 V
I
Q3 in saturation
V
0.7 V
4
Simplified Transistor - Transistor Logic (TTL)
High Input, Low Output
  • Q3 in driving inverter is in cutoff so vo
    VCC 5 V vi of Q1
  • Transistor Q1 (Load Inverter)
  • E jcn rev. biased (VBE1 0.7V, VBE1 lt 0).
  • C jcn forward biased (VBC1 ? ).
  • Q1 in inverse active mode and iE1 ßr iB1
    0, since ßr is very small, e.g. ßr 0.02
  • Transistor Q3 (Load Inverter)
  • How do we find VBC1?
  • Know VB1 VBC1 VBE3
  • Assuming iR flows through C junction of Q1
    and into the base of Q3, then
    VBC1 VBE3 0.7 V so iR
    (VCC - VBC1 -VBE3)/R
    (5 V- 1.4 V)/4K 0.9 mA
  • So E jcn of loads Q3 is forward biased,
    iB3 iR 0.9 mA 900 µA!
  • If Q3 in active mode, iC3 ß iB3 and for
    ß 50, then iC3 50(0.9 mA) 45 mA.
  • Is this possible? NO! Why?
    vo VCC - iC3 RC 5 V - 45 mA
    (1.6K) 5V - 72V - 67V lt 0 ! Not
    possible !
  • So Q3 must be in saturation mode since the
    base current is very large (900 µA),
    where vo VCE,sat 0.2 V so
    iC3 (5V-0.2V)/1.6K 3mA.
    This verifies that Q3 is in saturation
    since iC3 3 mA lt ß iB3 45 mA.

VCC 5V
VCC 5V
iR
RC 1.6K
VB1 5 V-iRR

Driving inverter
Ic3 3 mA
R4K
.

p

n

VBC1
VBE1lt 0
vo
n
p
Q3 in cutoff

n

VBE3
iC1 iB3
iE1 0

n
voVCC 5 V
I
iC
active
Saturation iC/iB lt ?
V
0.7 V
vCE
5
Simplified TTL Transfer Characteristic
  • Region I (A to B) (Low vi, high vo )
  • Q1 is in forward saturation
  • E jcn forward biased (VBE1 0.7 V and base
    current is large, iB1 iR1 1 mA ).
  • C jcn is weakly forward biased (VBC1 0.45
    V ), so Q1 in
    saturation mode.
  • VCE1 VCB1VBE1 -VBC1VBE1 -0.45 0.7
    0.25V
  • Current iR is flowing out the input.
  • Q3 is biased in forward active mode, but
    only weakly (not on since VBE3 lt 0.7 V).
  • VB1 vi 0.7 V
  • Assuming VBC1 VBE3 , then both are equal
    to (0.35 V vi /2) 0.45V lt 0.7 V.
  • So E jcn of Q3 is forward biased, but
    not enough so iB3 0 and Q3 is off.
  • Then iC3 0 and vo VCC 5 V.
  • Note
  • iR (VCC VCE3,sat VBE1)/R
    (5 V - 0.2V - 0.7V)/4K
    1.0 mA
  • Since iC1 iB3 0, nearly all of this
    current is going out the E of Q1 so iE1
    iR 1.0 mA.

VCC 5V
VCC 5V
iR
VB1 0.7Vvi
RC 1.6K

R4K
.
iC3
VBE1 0.7V

p

n

VBC1
vo
n
p

n

VBE3
iE1
iC1 iB3
n
vi
vo
B
A
VCC 5V
I
vi
6
Simplified TTL Transfer Characteristic
  • Region II (B to C) (Transition region)
  • Q1 is still in saturation.
  • Q3 initially is biased in forward active
    mode, but weakly (VBE3 lt 0.7 V).
  • When does this change?
  • When vi 0.6 V, then VB1 vi 0.7 V 1.3 V
    so VBC1 VBE3 0.65 V and these p-n
    junctions can begin to conduct current.
  • This current comes thru R as iR.
  • This provides the base current for Q3 to
    begin to turn on and so the collector
    current iC3 rises and the output voltage
    starts dropping according to
    vo VCC - iC3 RC 5 V - iC3 (1.6K)
  • Note the size of iR is about the same as
    before, i.e. iR (VCC - VBC1 -VBE3)/R (5
    V- 1.3 V)/4K 0.93 mA. Most of this
    current is still going out the gate input
    (E of Q1 ) since iB3 starts out very
    small (µAs).

VCC 5V
VCC 5V
iR
RC 1.6K
VB1 0.7Vvi

R4K
.
iC3
VBE1 0.7V
p

n


VBC1
vo
n
p

n

VBE3
iE1
-iC1 iB3
n
vi
vo
B
A
VCC 5V
I
II
VCE3,sat 0.2V
C
vi
0.6 V 0.7V
7
Simplified TTL Transfer Characteristic
  • Where is point C?
  • Region II (B to C) (Transition region)
  • Q1 initially in saturation
  • Q3 initially is biased in forward active
    mode, but only weakly on since VBE3 lt 0.7
    V.
  • For Q3, as vi rises, the base current iB3
    rises, iC3 rises and the output voltage
    drops. vo VCC - iC3 RC
    5 V - iC3 (1.6K)
  • Where is point C?
  • When vi 0.7 V, then VB1 VBC1 VBE3 vi
    0.7 V 1.4 V so VBC1 VBE3 0.7 V and these
    p-n jncs can conduct large currents.
  • As vi rises from 0.6 V to 0.7 V, more and
    more of iR (0.9 mA) goes into the base
    of Q3 and it enters further into the
    active mode.
  • At C, Q3 reaches the edge of saturation,
    vo VCE,sat 0.2 V, so iC3 (5V - 0.2)/1.6K
    3 mA. Then iB3 iC3 /ß 3mA/50 60 µA.
    So only 60 µA of iR ( 1 mA 1000 µA)
    needs to be diverted into the base of Q3
    to drive it into saturation!
  • So at point C most of iR is still going
    out the gates input (E of Q1), since iR
    0.9 mA and iB3 60 µA.

VCC 5V
VCC 5V
iR
RC 1.6K
VB1 0.7Vvi

R4K
.
iC3

VBE1 0.7V
p

n

VBC1
vo
n
p

n

VBE3
-iC1 iB3
iE1
n
vi
vo
iC
Q3
B
A
VCC 5V
C
active
Saturation iC/iB lt ß
I
II
VCE3,sat 0.2V
C
A,B
vi
0.6 V 0.7V
vCE
8
Simplified TTL Transfer Characteristic
  • Region III (C to D) (Low output region)
  • Q1 initially still in saturation at C
  • As vi rises above 0.7V, VB1 is nearly
    constant at 1.4V, so E junction of Q1
    becomes less forward biased and then
    eventually becomes reverse biased.
  • C junction is forward biased, so Q1 moves
    from forward active to inverse active mode
    where iE1 ßr iB1 where ßr 0.02 ltlt
    ß 50.
  • Q3 is entering saturation at C, VBE3 0.7 V
  • For Q3, as vi rises above 0.7 V, VB1
    rises slowly to 1.6 V as vi rises to 5 V.
  • When VB1 1.6 V, then VBC1 VBE3 0.8 V
    VBE.sat.
  • At VBE3 0.8 V, iB3 is larger yet and now
    Q3 is strongly driven into saturation so
    VCE3,sat ? 0.1 V.
  • For Q3 in saturation, iC3 ltlt ß iB3 . As
    iB3 increases, iC3 is nearly constant since
    vo VCE3,sat and VCE3,sat goes down from
    0.2 V to 0.1 V so iC3 increases from 3.0 mA
    to
  • iC3 (5V - 0.1)/1.6K 3.06 mA.

VCC 5V
VCC 5V
iR
RC 1.6K
VB1 1.4V

R4K
iC3
.

p

n

VBE1
VBC1
vo
n
p

n

VBE3
iC1 iB3
iE1
n
vi
vo
iC
Q3
B
A
C
D
VCC 5V
I
II
III
active
Saturation iC/iB lt ß
0.2V 0.1V
C
D
A,B
vi
0.6 V 0.7V 5 V
vCE
9
Simplified TTL Transfer Characteristic
VCC 5V
VCC 5V
  • Noise Margin (Low state)
  • VOL VCE3,sat 0.1 V
  • VIL 0.6 V
  • NML VIL - VOL 0.6V - 0.1 V 0.5 V
  • Noise Margin (High state)
  • VOH VCC 5 V
  • VIH 0.7 V
  • NMH VOH - VIH 5 V - 0.7 V 4.3 V

RC 1.6K

R4K



VBE1
VBC1
vo


VBE3
vi
vo
B
A
iC
Q3
VCC 5V
C
D
.
I
II
III
NML VIL - VOL
active
Saturation iC/iB lt ß
NMH VOH - VIH
C
D
0.2V VOL 0.1V
vi
A,B
0.6V 0.7V 5 V
VOL VIL VIH VOH
vCE
10
Simplified TTL Propagation Delay
  • Output going high
  • Transistor Q3 turned off (cutoff)
  • Charging current flows through RC
  • tPLH is time it takes the output to rise
    from VOL VCE,sat 0.1 V to 1/2(VOH VOL)
    2.6 V

vo
VCC 5 V
iRc
iCap
RC 1.6K
VCC

vo

C
VCE

VBE
VCE,sat
t
tPLH
vo
B
A
VOH 5V
I
II
III
C
VOL 0.1V
D
vi
0.6 V 0.7V 5 V
VIL
VIH
11
Simplified TTL Propagation Delay
  • Output going low
  • Transistor Q3 turned on (initially active,
    moving toward saturation) and providing
    discharge current (P? R ? S)
  • But current also flows through RC
  • tPHL is time it takes the output to fall
    from VOH VCC 5 V to
  • 1/2(VOH VOL) 2.6 V

VCC 5 V
vo
iRc
iCap
RC 1.6K
VCC

vo

C
2.6 V
VCE

VBE
VCE,sat
t
tPHL
iC
vo
B
A
VOH 5V
I
II
III
S
R
C
VOL 0.1V
D
vi
0.6 V 0.7V 5 V
VIL
P
VIH
vCE
12
Simplified TTL Propagation Delay
  • Output going low

vo
VCC 5 V
iRc
iCap
RC 1.6K
VCC
iC

vo

C
2.6 V

VCE
VBE
VCE,sat
t
tPHL
iC
R
S
P
What current to use for the transistor Q3?
vCE
13
Simplified TTL Propagation Delay
  • Output going low
  • Q3 starts in active mode at Pt. R
  • Final note
  • iC 45 mA is a very large current, which
    is useful for discharging the capacitor
    quickly.
  • When the capacitor is discharged, this iC3
    drops dramatically in size to only
  • At this point, Q3 is now in saturation
    mode since

vo
VCC 5V
iRc
iR
RC 1.6K
iCap
VCC

iB3
iC3
vo
C


VCE
VBE
VCE,sat
t
iC
R
S
P
vCE
14
Simplified TTL Power Dissipation
  • Output High State
  • Transistor Q3 is in cutoff so iC3 0, so
    no static power dissipation in Q3.
  • Transistor Q1 is in saturation with iB1 iR
    1 mA
  • Static power dissipation for high state,
    PL1 VCC iR (5 V)(1 mA) 5 mW
  • So static power dissipation for the
    inverter for the high output state is PH 5
    mW
  • Output Low State
  • Transistor Q3 is in saturation so v o
    VCE,sat 0.1 V.
  • iC3 (VCC - VCE3,sat )/RC (5V - 0.1 V)/1.6K
    3 mA.
  • PL3 VCC iC3 (5 V)(3 mA) 15 mW
  • Transistor Q1 is in the inverse active
    mode, but still has a large base current
    of 0.9 mA.
  • PL1 VCC iR (5 V)(0.9 mA) 4.5 mW
  • Total power dissipation in low state PL 19.5
    mW
  • Average P 1/2(PH PL) 12.3 mW
  • Power - Delay Product
  • DP P tp (12.3 mW)(8.3 nsec) 102 pJ

VCC 5 V
iCap
RC 1.6K
iR
iC3

vo

C

VCE
VBE
vo
B
A
VOH 5V
I
II
III
C
VOL 0.1V
D
vi
0.6 V 0.7V 5 V
VIL
VIH
15
Simplified Transistor - Transistor Logic
  • Simplified TTL provides performance similar
    to RTL.
  • Logic levels and noise margins
  • Noise Margin for Low State
  • NML VIL VO
  • 0.6 V - 0.1 V 0.5 V
  • Noise Margin for High State
  • NMH VOH - VIH
  • 5 V - 0.7 V 4.3 V
  • Unequal noise margins for high and low
    states.
  • Propagation delays
  • Output going low
  • Output going high
  • Propagation delay
  • Power Delay Product

Simplified TTL very similar to RTL in
noise margins. Better speed due to
smaller RC used in simplified TTL
(1.6 K) versus 10 K in RTL.
Simplified TTL worse in power
dissipation and power-delay product. Also
more costly and complex due to use of
more transistors per gate.
16
Simplified TTL vs. RTL
vo
vo
vi
vi
  • Logic levels and noise margins
  • Noise Margin for Low State
  • NML VIL VO 0.6 V - 0.1 V 0.5V
  • Noise Margin for High State
  • NMH VOH - VIH 5 V - 0.7 V 4.3 V
  • Unequal noise margins for high and low
    states.
  • Propagation delays
  • Output going low
  • Output going high
  • Propagation delay
  • Power Delay Product
  • Logic levels and noise margins
  • Noise Margin for Low State
  • NML VIL VO 0.7 V - 0.2 V 0.5 V
  • Noise Margin for High State
  • NMH VOH - VIH 5 V - 0.8 V 4.2 V
  • Unequal noise margins for high and low
    states.
  • Propagation delays
  • Output going low
  • Output going high
  • Propagation delay
  • Power Delay Product
Write a Comment
User Comments (0)
About PowerShow.com