16.360 Lecture 13 - PowerPoint PPT Presentation

About This Presentation
Title:

16.360 Lecture 13

Description:

16.360 Lecture 13 Basic Laws of Vector Algebra Scalars: e.g. 2 gallons, $1,000, 35 C Vectors: e.g. velocity: 35mph heading south 3N force toward center – PowerPoint PPT presentation

Number of Views:57
Avg rating:3.0/5.0
Slides: 49
Provided by: Xuej
Learn more at: https://faculty.uml.edu
Category:

less

Transcript and Presenter's Notes

Title: 16.360 Lecture 13


1
16.360 Lecture 13
Basic Laws of Vector Algebra
Scalars
e.g. 2 gallons, 1,000, 35ºC
Vectors
e.g. velocity 35mph heading south 3N
force toward center
2
16.360 Lecture 13
  • Cartesian coordinate system

z
A
?
y
?
x
3
16.360 Lecture 13
  • Vector addition and subtraction

C BA A B,
A
C
C
parallelogram rule
A
head-to-tail rule
C BA A B,
B
B
D A - B -(B A),
A
A
D
D (B-A)
B
B
4
16.360 Lecture 13
  • position and distance

z
A
B
y
D A - B -(B A),
x
5
16.360 Lecture 13
  • Vector multiplication

1. simple product
2. scalar product (dot product)
6
16.360 Lecture 13
Properties of scalar product (dot product)
a) commutative property
b) Distributitve property
7
16.360 Lecture 13
3. vector product (cross product)
a) anticommutative property
b) Distributitve property
c)
8
16.360 Lecture 13
3. vector product (cross product)
9
16.360 Lecture 13
Example vectors and angles
  • In Cartesian coordinate, vector A is directed
    from origin to point P1(2,3,3), and vector B is
    directed from P1 to pint P2(1,-2,2). Find
  • (a) Vector A, its magnitude A, and unit vector
    a
  • (b) the angle that A makes with the y-axis
  • (c) Vector B
  • (d) the angle between A and B
  • (e) perpendicular distance from origin to vector
    B

10
16.360 Lecture 13
4. Scalar and vector triple product
a) scalar triple product
b) vector triple product
11
16.360 Lecture 13
Example vector triple product
12
16.360 Lecture 14
  • Cartesian coordinate system

z
dl
?
y
?
x
13
16.360 Lecture 14
  • Cartesian coordinate system

z
directions of area
y
x
14
16.360 Lecture 14
  • Cylindrical coordinate system

15
16.360 Lecture 14
  • the differential areas and volume

16
16.360 Lecture 14
Example cylindrical area
z
5
3
y
60
30
x
17
16.360 Lecture 14
  • Spherical coordinate system

18
16.360 Lecture 14
  • differential volume in Spherical coordinate
    system

19
16.360 Lecture 14
  • Examples

(1) Find the area of the strip
(2) A sphere of radius 2cm contains a volume
charge density
Find the total charge contained in the sphere
20
16.360 Lecture 15
  • Cartesian to cylindrical transformation

21
16.360 Lecture 15
  • Cartesian to cylindrical transformation

22
16.360 Lecture 15
  • Cartesian to cylindrical transformation

23
16.360 Lecture 15
  • Cartesian to Spherical transformation

24
16.360 Lecture 15
  • Cartesian to Spherical transformation

25
16.360 Lecture 15
  • Cartesian to Spherical transformation

26
16.360 Lecture 15
  • Distance between two points

27
16.360 Lecture 16
Gradient in Cartesian Coordinates
Gradient differential change of a scalar

The direction of
is along the maximum increase of T.
28
16.360 Lecture 16
Example of Gradient in Cartesian Coordinates
Find the directional derivative of
along the direction
and evaluate it at (1, -1,2).
29
16.360 Lecture 16
Gradient operator in cylindrical Coordinates
30
16.360 Lecture 16
Gradient operator in cylindrical Coordinates
31
16.360 Lecture 16
Gradient operator in Spherical Coordinates
32
16.360 Lecture 16
Properties of the Gradient operator
33
16.360 Lecture 17
Flux in Cartesian Coordinates
34
16.360 Lecture 17
Flux in Cartesian Coordinates
35
16.360 Lecture 17
Definition of divergence in Cartesian Coordinates
36
16.360 Lecture 17
Properties of divergence
If
No net flux on any closed surface.
Divergence theorem
37
16.360 Lecture 17
Divergence in Cylindrical Coordinates
38
16.360 Lecture 17
Divergence in Cylindrical Coordinates
39
16.360 Lecture 17
Divergence in Spherical Coordinates
40
16.360 Lecture 17
Divergence in Spherical Coordinates
41
16.360 Lecture 17
Divergence in Spherical Coordinates
42
16.360 Lecture 18
Circulation of a Vector
43
16.360 Lecture 18
Circulation of a Vector
44
16.360 Lecture 18
Curl in Cartesian Coordinates
45
16.360 Lecture 18
Vector identities involving the curl
Stokess theorem
46
16.360 Lecture 18
Curls in Rectangular, Cylindrical and Spherical
Coordinates
47
16.360 Lecture 18
Laplacian Operator of a scalar
48
16.360 Lecture 18
Laplacian Operator of a vector
Write a Comment
User Comments (0)
About PowerShow.com