Title: Spatial Econometric Analysis Using GAUSS
1Spatial Econometric Analysis Using GAUSS
- 10
- Kuan-Pin LinPortland State University
2Spatial Panel Data Models
3Spatial Panel Data Models
- Assumptions
- Fixed Effects
- Random Effects
- Spatial Error Model AI or l0
- Spatial Lag Model BI or r0
- Panel Data Model ABI
4Spatial Panel Data Models Example U. S.
Productivity (48 States, 17 Years)
- Panel Data Model
- ln(GSP) b0 b1 ln(Public) b2ln(Private)
b3ln(Labor) b4(Unemp) e - e i?u v
- Spatial Lag Model
- ln(GSP) b0 b1 ln(Public) b2ln(Private)
b3ln(Labor) b4(Unemp) ?W ln(GSP) e - e i?u v
- Spatial Error Model
- ln(GSP) b0 b1 ln(Public) b2ln(Private)
b3ln(Labor) b4(Unemp) e - e r We e , e i?u v
- Spatial Mixed Model
- ln(GSP) b0 b1 ln(Public) b2ln(Private)
b3ln(Labor) b4(Unemp) ?W ln(GSP) e - e r We e , e i?u v
5Model Estimation
- Based on panel data models (pooled, fixed
effects, random effects), we consider - Spatial Error Model
- Spatial Lag Model
- Spatial Mixed Model
- Model Estimation
- Generalized Least Squares (IV/GLS)
- Generalized Method of Moments (GMM/GLS)
- Maximum Likelihood Estimation
6Spatial Lag Model Estimation
- The Model SPLAG(1)
- OLS is biased and inconsistent.
7Spatial Lag Model Estimation
8Spatial Lag Model Estimation Fixed Effects IV
or 2SLS
- Instrumental Variables
- Two-Stage Least Squares
9Spatial Lag Model Estimation
10Spatial Lag Model Estimation Random Effects
IV/GLS
- Instrumental Variables
- Two-Stage Generalized Least Squares
11Spatial Lag Model Estimation Random Effects
IV/GLS
- Feasible Generalized Least Squares
- Estimate sv2 and su2 from the fixed effects
model - FGLS for random effects model
12Spatial Error Model Estimation
- The Model SPAR(1)
- Fixed Effects
- Random Effects
13Spatial Error Model EstimationFixed Effects
14Spatial Error Model Estimation Fixed Effects
- The Model SPAR(1)
- Estimate b and r iteratively GMM/GLS
- OLS
- GMM
- GLS
15Spatial Error Model Estimation Random Effects
- Moment Functions (Kapoor, Kelejian and Prucha,
2006)
16Spatial Error Model Estimation Random Effects
- The Model SPAR(1)
- Estimate b and r iteratively GMM/GLS
- OLS
- GMM
- GLS
17Spatial Mixed Model Estimation
18Spatial Mixed Model Estimation
- Two-Stage Estimation
- Sample moment functions are the same as in the
spatial error AR(1) model. The efficient GMM
estimator follows exactly the same as the spatial
error AR(1) model. - The transformed model which removes spatial error
AR(1) correlation is estimated the same way as
the spatial lag model using IV and GLS.
19Spatial Mixed Model Estimation Fixed Effects
20Spatial Mixed Model Estimation Fixed Effects
- Estimate b and r iteratively GMM/GLS
- IV/2SLS
- GMM
- GLS
21Spatial Mixed Model Estimation Random Effects
22Spatial Mixed Model Estimation Random Effects
- Estimate b,l and r iteratively GMM/GLS
- IV/2SLS
- GMM
- GLS
23Example U. S. ProductivityBaltagi (2008)
munnell.5
- Spatial Panel Data Model GMM/GLS (Spatial Error)
ln(GSP) b0 b1 ln(Public) b2ln(Private)
b3ln(Labor) b4(Unemp)
e, e ?W e e, e i?u v
Fixed Effects s.e Random Effects s.e
b1 0.005 0.026 0.031 0.023
b2 0.202 0.024 0.273 0.021
b3 0.782 0.029 0.736 0.025
b4 -0.002 0.001 -0.005 0.001
b0 - - 2.222 0.136
? 0.578 0.046 0.321 0.060
24Example U. S. ProductivityBaltagi (2008)
munnell.5
- Spatial Panel Data Model GMM/GLS (Spatial Mixed)
ln(GSP) b0 b1 ln(Public) b2ln(Private)
b3ln(Labor) b4(Unemp) ?W ln(GSP) e ,
e ?W e e , e i?u v
Fixed Effects s.e Random Effects s.e
b1 -0.010 0.026 0.040 0.024
b2 0.185 0.025 0.259 0.022
b3 0.756 0.029 0.728 0.026
b4 -0.003 0.001 -0.005 0.001
b0 - - 2.031 0.174
? 0.093 0.024 0.030 0.015
? 0.488 0.051 0.312 0.059
25Another ExampleChina Provincial Productivity
china.9
- Spatial Panel Data Model GMM/GLS (Spatial Error)
ln(Q) a b ln(L) g ln(K) e
e ?W e e , e i?u v
Fixed Effects s.e Random Effects s.e
b 0.2928 0.073 0.4898 0.062
g 0.0282 0.017 0.0090 0.017
a - - 2.6298 0.587
? 0.5013 0.059 0.6424 0.071
26Another ExampleChina Provincial Productivity
china.9
- Spatial Panel Data Model GMM/GLS (Spatial Mixed)
ln(Q) a b ln(L) g ln(K) l W ln(Q)
e e ?W e e , e i?u v
Fixed Effects s.e Random Effects s.e
b 0.256 0.080 0.481 0.076
g 0.022 0.019 0.013 0.015
a - - 6.513 2.394
? 0.287 0.189 1.203 0.059
? 0.267 0.074 -0.475 0.239
27Maximum Likelihood Estimation
- Error Components
- Assumptions
- Fixed Effects
- Random Effects
28Maximum Likelihood EstimationFixed Effects
29Maximum Likelihood EstimationFixed Effects
- Log-Likelihood Function (Lee and Yu, 2010)
- Where z is the transformation of z using the
orthogonal eigenvector matrix of Q.
30Maximum Likelihood EstimationRandom Effects
31Example U. S. ProductivityBaltagi (2008)
munnell.4
- Spatial Panel Data Model QML (Spatial Lag)
ln(GSP) b0 b1 ln(Public) b2ln(Private)
b3ln(Labor) b4(Unemp) ?W
ln(GSP) e , e i?u v
Fixed Effects s.e Random Effects s.e
b1 -0.047 0.026 0.013 0.028
b2 0.187 0.025 0.226 0.025
b3 0.625 0.029 0.671 0.029
b4 -0.005 0.0009 -0.006 0.0009
b0 - - 1.658 0.166
? 0.275 0.022 0.162 0.029
32Example U. S. ProductivityBaltagi (2008)
munnell.4
- Spatial Panel Data Model QML (Spatial Error)
ln(GSP) b0 b1 ln(Public) b2ln(Private)
b3ln(Labor) b4(Unemp) e, e
?W e e , e i?u v
Fixed Effects s.e Random Effects s.e
b1 0.005 0.026 0.045 0.027
b2 0.205 0.025 0.246 0.023
b3 0.782 0.029 0.743 0.027
b4 -0.002 0.001 -0.004 0.001
b0 - - 2.325 0.155
? 0.557 0.034 0.527 0.033
33Example U. S. ProductivityBaltagi (2008)
munnell.4
- Spatial Panel Data Model QML (Spatial Mixed)
ln(GSP) b0 b1 ln(Public) b2ln(Private)
b3ln(Labor) b4(Unemp) ?W ln(GSP) e , e
?W e e , e i?u v
Fixed Effects s.e Random Effects s.e
b1 -0.010 0.027 0.044 0.023
b2 0.191 0.025 0.249 0.023
b3 0.755 0.031 0.742 0.027
b4 -0.003 0.001 -0.004 0.001
b0 - - 2.289 0.212
? 0.089 0.031 0.004 0.017
? 0.455 0.052 0.522 0.038
34Another ExampleChina Provincial Productivity
china.8
- Spatial Panel Data Model QML (Spatial Lag)
ln(Q) a b ln(L) g ln(K) l W ln(Q) e
e i?u
v
Fixed Effects s.e Random Effects s.e
b 0.2203 0.0707 0.3794 0.074
g 0.0177 0.0163 -0.0046 0.016
a - - 0.9081 0.626
? 0.4361 0.0557 0.3941 0.055
35Another ExampleChina Provincial Productivity
china.8
- Spatial Panel Data Model QML (Spatial Error)
ln(Q) a b ln(L) g ln(K) e
e ?W e e , e i?u v
Fixed Effects s.e Random Effects s.e
b 0.2969 0.073 0.4928 0.077
g 0.0297 0.017 0.0091 0.017
a - - 2.6548 0.657
? 0.4521 0.058 0.4364 0.055
36Another ExampleChina Provincial Productivity
china.8
- Spatial Panel Data Model QML (Spatial Mixed)
ln(Q) a b ln(L) g ln(K) l W ln(Q) e
e ?W e e , e i?u v
Fixed Effects s.e Random Effects s.e
b 0.143 0.058 0.247 0.062
g 0.004 0.013 -0.014 0.013
a - - -0.119 0.496
? 0.731 0.058 0.712 0.064
? -0.571 0.136 -0.563 0.145
37References
- Elhorst, J. P. (2003). Specification and
estimation of spatial panel data models,
International Regional Science Review 26,
244-268. - Kapoor M., Kelejian, H. and I. R. Prucha, Panel
Data Models with Spatially Correlated Error
Components, Journal of Econometrics, 140, 2006
97-130. - Lee, L. F., and J. Yu, Estimation of Spatial
Autoregressive Panel Data Models with Fixed
Effects, Journal of Econometrics 154, 2010
165-185.