?? (Dedekind) - PowerPoint PPT Presentation

About This Presentation
Title:

?? (Dedekind)

Description:

Title: PowerPoint Author: sc Last modified by: sc Created Date: 9/7/2003 8:52:13 AM Document presentation format: Company – PowerPoint PPT presentation

Number of Views:12
Avg rating:3.0/5.0
Slides: 22
Provided by: sc778
Category:
Tags: dedekind | levi | strauss

less

Transcript and Presenter's Notes

Title: ?? (Dedekind)


1
?? (Dedekind)
  • (ab)c a(bc), abba, a00aa, a(-a)0
  • (ab)c a(bc), abba, 1aa1a, aa-11a-1a
  • a(bc) ab ac
  • a, b ? P ? ab ? P a, b ? P ? ab ? P, a ? F a ?
    0 ? a ? P ?? a ? P
  • Dedekind cut

2
v2v2 ???, ??? ?
  • e Euler (1737), Hermite (1873)
  • Pi Lambert(1761), Lindemann(1882)
  • Lambert r ?????? tan r, er ???
  • Hermite, Weierstrass a? ?????? ea, log a ? ???
  • Hilbert 7? ?? a ???, b ???????? ab? ?????.
    (Gelfond, Schneider 1934)

3
?? ??? ??????
  • Decimal representation
  • Limits of sequences
  • Sums of sequences
  • Infinite product
  • Continued fractions
  • Definite integral
  • Etc.

4
e lim n-gt? (11/n)n
  • e 2.71828183..
  • log x ?x1 dt/t, log(e) 1
  • e ?n1?1/n!
  • e 2,1,2,1,1,4,1,1,6,1,1,8,1,1(Euler)

5
?? ???
  • ?????? ?? ???? ????. ????(Levi-strauss,
    Chomsky)? ??? ??? ??? ??? ??? ??.
  • ? group
  • ? ring
  • ?? module
  • ? field
  • ?? algebra

6
? group
  • Binary operation G x G -gt G
  • Associative
  • Identity a e e a a
  • Inverse a a -1 e a-1 a
  • ? (Z, ), (Q, ), (R, ), (Q-0,), (R-0,),
    (C-0,)
  • (Z/nZ, ), ((Z/nZ)x, )
  • ??? ab ba

???
7
Dihedral group
  • 1,r,r2, , r n-1, s, sr, sr 2,,sr n-1

8
Symmetric group
  • A1,2,3,,n
  • f A -gt A, g A -gt A, g o f A -gt A
  • Cycle decomposition
  • (135)(478)(29)
  • Sn ? ???? ???. ngt2

9
???
  • HomomorphismF G -gt H, F(gh) F(g)F(h)
  • Isomorphism homomorphism bijection
  • ??? ??? ?? ??? ???? ??.

10
? Ring
  • (R, , ) (I) (R, ) abelian group(II) x is
    associative(III) distributive law a(bc)
    ab ac
  • Commutative abba
  • Identity

11
?? ?
  • ?? Z, ??? Q, ?? R, ??? C
  • Z/nZ
  • Z(?D)ab ?D a, b ? Z
  • Hamiltonian a b i c j d ki2j2k2-1, ij
    -jik, jk-kjI, ki-ikj

12
?? ?
  • ???? polynomial ringan x n b n-1 x n-1
    a1 x a0
  • ??? (aij)(a ij) (bij) (aij bij) (a ij)
    (bij) ( ?k aik bkj)

13
?? Module
  • (M, , R)(M, ) abelian group, R ringR x M -gt
    M (a) (rs)m rm sm (b) (rs)m r(sm) (c)
    r(mn) rm rn 1m m

14
??? ?
  • ????
  • ??? Zn?Zm?Zk?Z?Z?Z?Z
  • ??? G?H
  • 0 -gt A -gt B -gt C -gt0exactness
  • HomologyA-gt B-gt C-gt D-gt E-gt F -gt0

15
?(Field)
  • Commutative ring Fidentity e for , inverse for
    F-0
  • R, Q
  • Z/pZ p? ??
  • R(x), Q(x), Z/pZ(x)
  • Field extension K ? F C R Ri ? R

16
?
  • Q Q?2
  • Q(? 2,? 3)ab? 2 c? 3 d? 6
  • K, FK? ??

17
??? ??
  • ?? ??? ???
  • (1) 2?? ??? ?? ???????
  • (2) ? ?????
  • (3) ?? ??? ?? ???????
  • ????? ??? ?? (??????)

18
??? ??? ??
  • ?? ??? ???? ? a ? F(a), F 2m ? ????.
  • (I) Q(3?2), Q 3. ? 3?2? ???? ??.
  • (II) ? 60???. a3 3a 10? ?? ??? ?? ??. Q(a),
    Q3??? a? ???? ?? (???? ????. ? 180, 90?)
  • (III) Q(?), Q ? ??? ?? ???? ??.

19
?????? 3???
1
?
??/3
20
5???? ???
  • ??, ??? ? ??
  • ????? ???? ?? ??? ?? F??? ?? F, Q? ????
    ????? ??? ??. ??? ????? ?? ??? ?? solvable????.
    ??? 5? 5??? ???? solvable? ???.

21
??
  • ???? ??? ???? ????? ??????
  • ???? ??? ???? ?????
  • ???? ??? ??? ?????
  • ?, ?, ??, ?? ??, ??, ?? ??? ?????
Write a Comment
User Comments (0)
About PowerShow.com