Title: Behavioral Modeling of Data Converters using Verilog-A
1Behavioral Modeling of Data Converters using
Verilog-A
- George Suárez
- Graduate Student
- Electrical and Computer Engineering
- University of Puerto Rico, Mayaguez
Code 564 Microelectronics and Signal
Processing Branch NASA Goddard Space Flight Center
2Agenda
- Introduction
- Objectives
- Sample and Hold
- Generic data converters models
- Dynamic Element Matching
- Flash ADC
- SAR ADC
- Pipelined ADC
- Second Order S? Modulator
- Conclusions
- Future Work
- Acknowledgements
- References
3Introduction
- Transistor-level simulation is the most accurate
approach. - Impractical for complex systems, long simulation
time! - Alternate modeling techniques
- Can be used in Top-Down design approach.
Approach Accuracy Speed Flexibility
Device models ? ? ?
Finite-difference equations ? ? ?
Circuit-based macromodels ? ? ?
Time-domain macromodels ? ? ?
Behavioral models ? ? ?
4Introduction
System Level (Matlab, C, SystemC, AHDLs, etc)
Behavioral models
Functional Level (SPICE, AHDLs)
Transistor Level (SPICE)
Layout
Top-Down Design Approach
5Objectives
- Construct behavioral models using the Verilog-A
AHDL. - Simulate some popular ADCs architectures.
- Simulate other common used mixed-signal circuits.
- General modeling for non-idealities.
6Sample and Hold
Thermal noise Vth kT/Cs (Opamp noise neglected)
eg 1 - Cs / Cs (Cs Cp)/A0
- Finite DC gain A0
- Finite GBW
- Cp and CL
- Defective settling
- Linear
- Slewing
- Partial Slewing
7Jitter Noise
- Non-uniform sampling of the input signal.
- Depends on the jitter and the input signal.
- For a sine wave can be approximated by,
d is the sampling uncertainty.
8Jitter Noise
- Assumed to be white noise.
?t
-?t
Statistical properties of the jitter
Input signal to the system
9Thermal Noise
- Fluctuation of carriers due to thermal energy.
- Proportional to the temperature.
- Assumed to be white noise.
10Sample and Hold model
Thermal Noise
Ideal SH
Filter
Vout
Vin
Defective settling
t RonCs
Jitter
IdealNonideal
Vout
11Sample and Hold simulation results
PSD for sampled signal of 0 dB, fin 2.5146MHz N
8192, BW 25MHz
Increase in noise floor due nonidealities
12Generic DAC
- Mismatch in DAC units.
- INL
- Gain error
- Offset
Mismatch in units!
13Generic converters model
a gain error
Integral Non-linearity
14DEM
- Used to minimize the effect of DAC mismatch.
- For modeling it is easier to implement a
stochastic DEM.
Deterministic
Stochastic
15DEM model
if(DEM_enable) begin generate
i(1,DAC_UNITS) begin temp
dist_uniform(seed, 1, DAC_UNITS)
if(temp - floor(temp) gt 0.5) DEMi
ceil(temp) else DEMi
floor(temp) end end // Then select units
stored in the array DEM for conversion
16Flash ADC
- Finite DC gain
- Finite GBW
- Input resistance
- Output resistance
- Max current
- Offset voltage
- Slew Rate
Cadence provides a well accepted OPAMP behavioral
model !
17Flash ADC simulation results
PSD plot for 8-bit Flash ADC with 0 dB input
signal fin of 3.01MHz, Samples 4096, BW 5MHz
IdealNonideal
SNDR (dB) 49.264 44.408
SNR (dB) 49.323 44.481
THD (dB) -67.954 -62.193
SFDR (dB) 60.778 47.261
ENOB 7.9 7.1
Ideal SNR 6.02N1.76 49.92 dB 50dB
18SAR ADC
19SAR 8-bit ADC simulation results
Ideal PSD plot for 8-bit SAR ADC with 0 dB input
signal Input frequency of 14.954KHz,
Samples 8192, Bandwidth 250KHz
49.823
SNDR (dB)
49.949
SNR (dB)
-65.263
THD (dB)
67.353
SFDR (dB)
8.0
ENOB
Ideal SNR 6.02N1.76 49.92 dB 50dB
20SAR 8-bit ADC simulation results
PSD plot for 8-bit SAR ADC with 0 dB input signal
Input frequency of 14.954KHz, Samples
8192, Bandwidth 250KHz
Increase in harmonics due mismatch in DAC units
Ideal SNR 6.02N1.76 49.92 dB 50dB
21Pipeline ADC 8-bit
dout
8 bits
Digital correction
2 bit
2 bit
2 bit
2 bits
F1
Registers
F2
2 bit
2 bit
2 bit
2 bits
Stage1
Stage2
Stage6
Sample hold
1.5 bit ADC
Vin
Anti-aliased signal
F2
F1
F2
F1
F1
F1
F2
221.5-bit Pipelined Stage
Vin
Residue
Vin
23Pipelined 8-bit ADC simulation results
PSD plot for 8-bit Pipelined ADC with 0 dB input
signal Input frequency of 1.01MHz,
Samples 8192, Bandwidth 5MHz
Ideal SNR 6.02N1.76 49.92 dB 50dB
24Second-Order S?? Model
- Single pole OTA model
- Defective settling
OTA switches for both phases F1 and F2
Thermal Noise
Thermal Noise
SC intg
SC intg
Vin
Jitter
g11
g21
?
?
g12
g22
3-bits
DAC
DAC
mismatch
Decoder
ILA
4-bits
4-bits
4-bits
25S?? Simulation Results GSM mode
Second order sigma-delta modulator with -6 dB
input signal Input frequency of 30kHz, OSR
65, N 65536, BW 200kHz (GSM mode)
VHDL-AMS 74.0164 dB Actual data 74.5000 dB
0.65 error
This work has been accepted as a lecture
presentation at the IEEE MWCAS 2005 conference,
August 7-10 Cincinnati, Ohio.
26Conclusions
- Behavioral modeling is a viable solution for the
modeling of mixed-signal circuits. - Verilog-A AHDL supports behavioral modeling and
provides modularity and flexibility. - Accurate behavioral models are achieved via
validation. - Behavioral modeling can be used as part of a
Top-Down design approach. - Effective circuits modeling requires deep
analysis including noise sources.
27Future Work
- Include more ADCs architectures.
- Add specific DAC architectures.
- Explore current based techniques.
- Validate some of the models.
28Acknowledgments
- Dr. Umesh Patel
- Dr. Manuel Jimenez
- Bob Kasa
- Wesley Powell
- Ellen Kozireski
- George Schoppet
- Alex Dea
- Damon Bradley
- Porfi Beltrán
- Irving Linares
- Amandeep Kaur
- Aaron Dixon
- George Winkert
29References
- M. Gustavsson, J. J. Wikner and N. N. Tan. CMOS
DATA CONVERTERS FOR COMMUNICATIONS, Kluwer
Academic Publishers, 2002. - A. Rodriguez-Vazquez, F. Medeiro and E. Janssens.
CMOS Telecom Data Converters. Kluwer Academic
Publishers, 2003. - F. Medeiro, A. Perez-Verdu and A.
Rodriguez-Vazquez. TOP-DOWN ESIGN OF
HIGH-PERFORMANCE SIGMA-DELTA MODULATORS, Kluwer
Academic Publishers, 1999. - D. Fitzpatrick and I. Miller. ANALOG BEHAVIORAL
MODELING WITH THE VERILOG-A LANGUAGE, Kluwer
Academic Publishers, 1998. - B. Razavi. Principles of Data Conversion System
Design. IEEE Press, 1995. - T. M. Hancock. S. M. Pernia and A. C. Zeeb. A
Digitally Corrected 1.5-Bit/Stage Low Power
80Ms/s 10-Bit Pipelined ADC. University of
Michigan EECS 598-02, December 2002. - M. Anderson, K. Norling and J. Yuan. On the
Effects of Static Errors in a Pipelined A/D
Converter. SSoCC 2003. - R. Sommer, I. Rugen-Herzig, E. Hennig, U. Gatti,
P. Malcovati, F. Maloberti, K. Einwich, C.
Clauss, P Schwarz and G. Noessing. From System
Specifications To Layout Seamless Top-Down
Design Methods for Analog and Mixed-Signal
Applications. Proc. of the 2002 Design,
Automation and Test in Europe, 2002. - N. Mohan. Efficient Testing of
Analog/Mixed-Signal ICs using Verilog-A,
www.techonline.com .
30References
- J. W. Bruce II. DYNAMIC ELEMENT MATCHING
TECHNIQUES FOR DATA CONVERTERS PhD Dissertation,
University of Nevada Las Vegas , May 2000. - K. Kundert. Top-Down Design of Mixed-Signal
Circuits. Cadence Design Systems, San Jose,
California, 2000. - K. W. Current, J. F. Parker, and W. J. Hardaker,
On Behavioral Modeling of Analog and
Mixed-Signal Circuits. IEEE Conference Record of
the Twenty-Eighth Asilomar on Signals, Systems
and Computers, vol. 1, pp264 268, 1994 - F. O. Fernandez Behavioral Modeling of S?
Modulators. Masters Thesis University of Puerto
Rico. Mayaguez, Puerto Rico 2003. - T. Kugelstadt. The operation of the SAR-ADC
based on charge redistribution TI Analog
Applications Journal, Texas Instruments, 2000. - J. Compiet, R de Jong, P, Wambacq, G,
Vandersteen, S. Donnay, M. Engels and I. Bolsens.
HIGH-LEVEL MODELING OF A HIGH-SPEED FLASH A/D
CONVERTER FOR MIXED-SIGNAL SIMULATIONS OF DIGITAL
TELECOMMUNICATION FRONT-ENDS. IEEE SSMSD, pp.
135 140, 2000. - B. Brannon. Aperture Uncertainty and ADC System
Performance. Analog Devices APPLICATION NOTE
AN-501. - Understanding SAR ADCs. Maxim-IC Application
Note 387 Mar 01, 2001. - Understanding Pipelined ADCs. Maxim-IC
Application Note 383 Mar 01, 2001. - Understanding Flash ADCs. Maxim-IC Application
Note 810 Oct 02, 2001
31printf (Questions?)
include ltstdio.hgt int main ()
char str 100
scanf ("s",str) return 0
32Acronyms
- ADC Analog-to-digital converter
- AHDL Analog Hardware Description Language
- DAC Digital-to-analog converter
- DEM Dynamic Element Matching
- ENOB Effective number of bits.
- FS Full scale voltage
- GBW Gain bandwidth
- ILA Individual Level Averaging
- INL Integral non-linearity
- MDAC Multiplying DAC
- SAR Successive Approximation Register
- SFDR - Spurious Free Dynamic Range
- SNDR Signal-to-noise plus distortion ratio
- SNR Signal-to-noise ratio
- THD Total Harmonic Distortion
- S?? Sigma-Delta Modulator