Behavioral Modeling of Data Converters using Verilog-A - PowerPoint PPT Presentation

1 / 32
About This Presentation
Title:

Behavioral Modeling of Data Converters using Verilog-A

Description:

Behavioral Modeling of Data Converters using Verilog-A George Su rez Graduate Student Electrical and Computer Engineering University of Puerto Rico, Mayaguez – PowerPoint PPT presentation

Number of Views:147
Avg rating:3.0/5.0
Slides: 33
Provided by: Geor119
Category:

less

Transcript and Presenter's Notes

Title: Behavioral Modeling of Data Converters using Verilog-A


1
Behavioral Modeling of Data Converters using
Verilog-A
  • George Suárez
  • Graduate Student
  • Electrical and Computer Engineering
  • University of Puerto Rico, Mayaguez

Code 564 Microelectronics and Signal
Processing Branch NASA Goddard Space Flight Center
2
Agenda
  • Introduction
  • Objectives
  • Sample and Hold
  • Generic data converters models
  • Dynamic Element Matching
  • Flash ADC
  • SAR ADC
  • Pipelined ADC
  • Second Order S? Modulator
  • Conclusions
  • Future Work
  • Acknowledgements
  • References

3
Introduction
  • Transistor-level simulation is the most accurate
    approach.
  • Impractical for complex systems, long simulation
    time!
  • Alternate modeling techniques
  • Can be used in Top-Down design approach.

Approach Accuracy Speed Flexibility
Device models ? ? ?
Finite-difference equations ? ? ?
Circuit-based macromodels ? ? ?
Time-domain macromodels ? ? ?
Behavioral models ? ? ?
4
Introduction
System Level (Matlab, C, SystemC, AHDLs, etc)
Behavioral models
Functional Level (SPICE, AHDLs)
Transistor Level (SPICE)
Layout
Top-Down Design Approach
5
Objectives
  • Construct behavioral models using the Verilog-A
    AHDL.
  • Simulate some popular ADCs architectures.
  • Simulate other common used mixed-signal circuits.
  • General modeling for non-idealities.

6
Sample and Hold
Thermal noise Vth kT/Cs (Opamp noise neglected)
eg 1 - Cs / Cs (Cs Cp)/A0
  • Finite DC gain A0
  • Finite GBW
  • Cp and CL
  • Defective settling
  • Linear
  • Slewing
  • Partial Slewing

7
Jitter Noise
  • Non-uniform sampling of the input signal.
  • Depends on the jitter and the input signal.
  • For a sine wave can be approximated by,

d is the sampling uncertainty.
8
Jitter Noise
  • Assumed to be white noise.

?t
-?t
Statistical properties of the jitter
Input signal to the system
9
Thermal Noise
  • Fluctuation of carriers due to thermal energy.
  • Proportional to the temperature.
  • Assumed to be white noise.

10
Sample and Hold model
Thermal Noise
Ideal SH
Filter
Vout
Vin
Defective settling

t RonCs
Jitter
IdealNonideal
Vout
11
Sample and Hold simulation results
PSD for sampled signal of 0 dB, fin 2.5146MHz N
8192, BW 25MHz
Increase in noise floor due nonidealities
12
Generic DAC
  • Mismatch in DAC units.
  • INL
  • Gain error
  • Offset

Mismatch in units!
13
Generic converters model
a gain error
Integral Non-linearity
14
DEM
  • Used to minimize the effect of DAC mismatch.
  • For modeling it is easier to implement a
    stochastic DEM.

Deterministic
Stochastic
15
DEM model
if(DEM_enable) begin generate
i(1,DAC_UNITS) begin temp
dist_uniform(seed, 1, DAC_UNITS)
if(temp - floor(temp) gt 0.5) DEMi
ceil(temp) else DEMi
floor(temp) end end // Then select units
stored in the array DEM for conversion
16
Flash ADC
  • Finite DC gain
  • Finite GBW
  • Input resistance
  • Output resistance
  • Max current
  • Offset voltage
  • Slew Rate

Cadence provides a well accepted OPAMP behavioral
model !
17
Flash ADC simulation results
PSD plot for 8-bit Flash ADC with 0 dB input
signal fin of 3.01MHz, Samples 4096, BW 5MHz
IdealNonideal
SNDR (dB) 49.264 44.408
SNR (dB) 49.323 44.481
THD (dB) -67.954 -62.193
SFDR (dB) 60.778 47.261
ENOB 7.9 7.1
Ideal SNR 6.02N1.76 49.92 dB 50dB
18
SAR ADC
19
SAR 8-bit ADC simulation results
Ideal PSD plot for 8-bit SAR ADC with 0 dB input
signal Input frequency of 14.954KHz,
Samples 8192, Bandwidth 250KHz
49.823
SNDR (dB)
49.949
SNR (dB)
-65.263
THD (dB)
67.353
SFDR (dB)
8.0
ENOB
Ideal SNR 6.02N1.76 49.92 dB 50dB
20
SAR 8-bit ADC simulation results
PSD plot for 8-bit SAR ADC with 0 dB input signal
Input frequency of 14.954KHz, Samples
8192, Bandwidth 250KHz
Increase in harmonics due mismatch in DAC units
Ideal SNR 6.02N1.76 49.92 dB 50dB
21
Pipeline ADC 8-bit
dout
8 bits
Digital correction
2 bit
2 bit
2 bit
2 bits
F1
Registers
F2
2 bit
2 bit
2 bit
2 bits
Stage1
Stage2
Stage6
Sample hold
1.5 bit ADC
Vin
Anti-aliased signal
F2
F1
F2
F1
F1
F1
F2
22
1.5-bit Pipelined Stage
Vin
Residue
Vin
23
Pipelined 8-bit ADC simulation results
PSD plot for 8-bit Pipelined ADC with 0 dB input
signal Input frequency of 1.01MHz,
Samples 8192, Bandwidth 5MHz
Ideal SNR 6.02N1.76 49.92 dB 50dB
24
Second-Order S?? Model
  • Single pole OTA model
  • Defective settling

OTA switches for both phases F1 and F2
Thermal Noise
Thermal Noise
SC intg
SC intg
Vin
Jitter
g11

g21
?
?

g12
g22
3-bits
DAC
DAC
mismatch
Decoder
ILA
4-bits
4-bits
4-bits
25
S?? Simulation Results GSM mode
Second order sigma-delta modulator with -6 dB
input signal Input frequency of 30kHz, OSR
65, N 65536, BW 200kHz (GSM mode)
VHDL-AMS 74.0164 dB Actual data 74.5000 dB
0.65 error
This work has been accepted as a lecture
presentation at the IEEE MWCAS 2005 conference,
August 7-10 Cincinnati, Ohio.
26
Conclusions
  • Behavioral modeling is a viable solution for the
    modeling of mixed-signal circuits.
  • Verilog-A AHDL supports behavioral modeling and
    provides modularity and flexibility.
  • Accurate behavioral models are achieved via
    validation.
  • Behavioral modeling can be used as part of a
    Top-Down design approach.
  • Effective circuits modeling requires deep
    analysis including noise sources.

27
Future Work
  • Include more ADCs architectures.
  • Add specific DAC architectures.
  • Explore current based techniques.
  • Validate some of the models.

28
Acknowledgments
  • Dr. Umesh Patel
  • Dr. Manuel Jimenez
  • Bob Kasa
  • Wesley Powell
  • Ellen Kozireski
  • George Schoppet
  • Alex Dea
  • Damon Bradley
  • Porfi Beltrán
  • Irving Linares
  • Amandeep Kaur
  • Aaron Dixon
  • George Winkert

29
References
  • M. Gustavsson, J. J. Wikner and N. N. Tan. CMOS
    DATA CONVERTERS FOR COMMUNICATIONS, Kluwer
    Academic Publishers, 2002.
  • A. Rodriguez-Vazquez, F. Medeiro and E. Janssens.
    CMOS Telecom Data Converters. Kluwer Academic
    Publishers, 2003.
  • F. Medeiro, A. Perez-Verdu and A.
    Rodriguez-Vazquez. TOP-DOWN ESIGN OF
    HIGH-PERFORMANCE SIGMA-DELTA MODULATORS, Kluwer
    Academic Publishers, 1999.
  • D. Fitzpatrick and I. Miller. ANALOG BEHAVIORAL
    MODELING WITH THE VERILOG-A LANGUAGE, Kluwer
    Academic Publishers, 1998.
  • B. Razavi. Principles of Data Conversion System
    Design. IEEE Press, 1995.
  • T. M. Hancock. S. M. Pernia and A. C. Zeeb. A
    Digitally Corrected 1.5-Bit/Stage Low Power
    80Ms/s 10-Bit Pipelined ADC. University of
    Michigan EECS 598-02, December 2002.
  • M. Anderson, K. Norling and J. Yuan. On the
    Effects of Static Errors in a Pipelined A/D
    Converter. SSoCC 2003.
  • R. Sommer, I. Rugen-Herzig, E. Hennig, U. Gatti,
    P. Malcovati, F. Maloberti, K. Einwich, C.
    Clauss, P Schwarz and G. Noessing. From System
    Specifications To Layout Seamless Top-Down
    Design Methods for Analog and Mixed-Signal
    Applications. Proc. of the 2002 Design,
    Automation and Test in Europe, 2002.
  • N. Mohan. Efficient Testing of
    Analog/Mixed-Signal ICs using Verilog-A,
    www.techonline.com .

30
References
  • J. W. Bruce II. DYNAMIC ELEMENT MATCHING
    TECHNIQUES FOR DATA CONVERTERS PhD Dissertation,
    University of Nevada Las Vegas , May 2000.
  • K. Kundert. Top-Down Design of Mixed-Signal
    Circuits. Cadence Design Systems, San Jose,
    California, 2000.
  • K. W. Current, J. F. Parker, and W. J. Hardaker,
    On Behavioral Modeling of Analog and
    Mixed-Signal Circuits. IEEE Conference Record of
    the Twenty-Eighth Asilomar on Signals, Systems
    and Computers, vol. 1,  pp264 268, 1994
  • F. O. Fernandez Behavioral Modeling of S?
    Modulators. Masters Thesis University of Puerto
    Rico. Mayaguez, Puerto Rico 2003.
  • T. Kugelstadt. The operation of the SAR-ADC
    based on charge redistribution TI Analog
    Applications Journal, Texas Instruments, 2000.
  • J. Compiet, R de Jong, P, Wambacq, G,
    Vandersteen, S. Donnay, M. Engels and I. Bolsens.
    HIGH-LEVEL MODELING OF A HIGH-SPEED FLASH A/D
    CONVERTER FOR MIXED-SIGNAL SIMULATIONS OF DIGITAL
    TELECOMMUNICATION FRONT-ENDS. IEEE SSMSD, pp.
    135 140, 2000.
  • B. Brannon. Aperture Uncertainty and ADC System
    Performance. Analog Devices APPLICATION NOTE
    AN-501.
  • Understanding SAR ADCs. Maxim-IC Application
    Note 387 Mar 01, 2001.
  • Understanding Pipelined ADCs. Maxim-IC
    Application Note 383 Mar 01, 2001.
  • Understanding Flash ADCs. Maxim-IC Application
    Note 810 Oct 02, 2001

31
printf (Questions?)
include ltstdio.hgt int main ()
char str 100
scanf ("s",str) return 0

32
Acronyms
  • ADC Analog-to-digital converter
  • AHDL Analog Hardware Description Language
  • DAC Digital-to-analog converter
  • DEM Dynamic Element Matching
  • ENOB Effective number of bits.
  • FS Full scale voltage
  • GBW Gain bandwidth
  • ILA Individual Level Averaging
  • INL Integral non-linearity
  • MDAC Multiplying DAC
  • SAR Successive Approximation Register
  • SFDR - Spurious Free Dynamic Range
  • SNDR Signal-to-noise plus distortion ratio
  • SNR Signal-to-noise ratio
  • THD Total Harmonic Distortion
  • S?? Sigma-Delta Modulator
Write a Comment
User Comments (0)
About PowerShow.com