Title: Variation of Fundamental Constants
1Variation ofFundamental Constants
- V.V. Flambaum
- School of Physics, UNSW, Sydney, Australia
- Co-authors
- Atomic calculations V.Dzuba, M.Kozlov,
E.Angstmann,J.Berengut,M.Marchenko,Cheng
Chin,S.Karshenboim,A.Nevsky - Nuclear and QCD calculations E.Shuryak,
V.Dmitriev, D.Leinweber, A.Thomas, R.Young,
A.Hoell, P.Jaikumar, C.Roberts,S.Wright,
A.Tedesco, W.Wiringa - Cosmology J.Barrow
- Quasar data analysis J.Webb,M.Murphy,M.Drinkwater,
W.Walsh,P.Tsanavaris,S.Curran - Quasar observations C.Churchill,J.Prochazka,A.Wolf
e,S.Muller,C,Henkel, F.Combes, - T.Wiklind, thanks to W.Sargent,R.Simcoe
- Laboratory measurements S.J. Ferrel,,A,Cingoz,ALap
piere,A.-T.Nguyen,N.Leefer, D.Budker,S.K.Lamoreuax
,J.R.Torgerson,S.Blatt,A.D.Ludlow,G.K.Cambell, - J.W.Thomsen,T.Zelevinsky,M.M.Boid,J.Ye,X.Baillard,
M.Fouche,R.LeTargat,A.Brush,P.Lemonde,M.Takamoto,F
.-L.Hong,H.Katori
2Motivation
- Extra space dimensions (Kaluza-Klein, Superstring
and M-theories). Extra space dimensions is a
common feature of theories unifying gravity with
other interactions. Any change in size of these
dimensions would manifest itself in the 3D world
as variation of fundamental constants. - Scalar fields . Fundamental constants depend on
scalar fields which vary in space and time
(variable vacuum dielectric constant e0 ). May
be related to dark energy and accelerated
expansion of the Universe.. - Fine tuning of fundamental constants is needed
for humans to exist. Example low-energy
resonance in production of carbon from helium in
stars (HeHeHeC). Slightly different coupling
constants no resonance - no life. - Variation of coupling constants in
space provide natural explanation of the fine
tuning we appeared in area of the Universe
where values of fundamental constants are
suitable for our existence. -
3Search for variation of fundamental constants
- Big Bang Nucleosynthesis
- Quasar Absorption Spectra 1
- Oklo natural nuclear reactor
- Atomic clocks 1
- Enhanced effects in atoms 1, molecules1 and
nuclei - Dependence on gravity
evidence?
evidences?
1 Based on atomic and molecular calculations
4Dimensionless Constants
- Since variation of dimensional constants
cannot be distinguished from variation of units,
it only makes sense to consider variation of
dimensionless constants. - Fine structure constant ae2/hc1/137.036
- Electron or quark mass/QCD strong interaction
scale, me,q/LQCD - a strong (r)const/ln(r LQCD /ch)
- me,q are proportional to Higgs vacuum (weak
scale)
5Variation of strong interaction
6Variation of strong interaction
- Grand unification models (Marciano Calmet,
- Fritzch Langecker, Segre, Strasser Dent)
7Relation between variations of different coupling
constants
- Grand unification models (Calmet,Fritzch
Langecker, Segre, Strasser)
8- a 3 -1(m)a strong -1 (m)b3ln(m /LQCD )
- a -1(m)5/3 a 1 -1(m) a 2 -1(m)
9Dependence on quark mass
- Dimensionless parameter is mq/LQCD . It is
convenient to assume LQCD const, i.e. measure mq
in units of LQCD - mp is proportional to (mqLQCD)1/2
Dmp/mp0.5Dmq/mq - Other meson and nucleon masses remains finite for
mq0. Dm/mK Dmq/mq - Argonne K are calculated for p,n,r,w,s.
10Nuclear magnetic moments depends on p-meson mass
mp
Nucleon magnetic moment
p
n
p
p
Spin-spin interaction between valence and core
nucleons
p
n
11 Nucleon and meson masses
QCD calculations lattice, chiral perturbation
theory,cloudy bag model, Dyson-Schwinger and
Faddeev equations, semiempirical. Nuclear
calculations meson exchange theory of strong
interaction. Nucleon mass in kinetic energy p2/2M
12Big Bang nucleosynthesis dependence on quark
mass
- Flambaum, Shuryak 2002
- Flambaum, Shuryak 2003
- Dmitriev, Flambaum 2003
- Dmitriev, Flambaum, Webb 2004
- Coc, Nunes, Olive, Uzan,Vangioni 2007
- Dent, Stern, Wetterich 2007
- Flambaum, Wiringa 2007
- Berengut, Dmitriev, Flambaum 2008
13(No Transcript)
14(No Transcript)
15Deuterium bottleneck
- At temeperature Tlt0.3 Mev all abundances follow
deuteron abundance - (no other nuclei produced if there are no
deuterons) - Reaction g d n p , exponentially small number
of energetic photons, e-( Ed/T) - Exponetilal sensitivity to deuteron binding
energy Ed , Ed2 Mev , - Freezeout temeperure Tf 30 KeV
16(No Transcript)
17(No Transcript)
18New BBN result
- Dent,Stern,Wetterich 2007 Berengut, Dmitriev,
- Flambaum 2008 dependence of BBN on energies of
2,3H,3,4He,6,7Li ,7,8Be - Flambaum,Wiringa 2007 dependence of binding
energies of 2,3H,3,4He,6,7Li, 7,8Be on nucleon
and meson masses, - Flambaum,Holl,Jaikumar,Roberts,Write,
- Maris 2006 dependence of nucleon and meson
masses on light quark mass mq. -
19Big Bang Nucleosynthesis Dependence on mq/ LQCD
- 2H 17.7x1.07(15) x0.009(19)
- 4He 1-0.95x1.005(36) x-0.005(38)
- 7Li 1-50x0.33(11) x0.013(02)
- Final result
- xDXq/Xq 0.013 (02), Xqmq/ LQCD
-
20Big Bang Nucleosynthesis Dependence on mq/ LQCD
- 2H 17.7x1.07(15) x0.009(19)
- 4He 1-0.95x1.005(36) x-0.005(38)
- 7Li 1-50x0.33(11) x0.013(02)
- Final result
- xDXq/Xq 0.013 (02), Xqmq/ LQCD
- Dominated by 7Li abundance (3 times
difference), consistent with 2H,4He - Nonlinear effects xDXq/Xq 0.015 (02)
21(No Transcript)
22Alkali Doublet Method(Bahcall,SargentVarshalovic
h, Potekhin, Ivanchik, et al)
- Fine structure interval
- DFS E(p3/2) - E(p1/2) A(Za)2
- If Dz is observed at red shift z and D0 is FS
measured on Earth then
Ivanchik et al, 1999 Da/a -3.3(6.5)(8) x
10-5. Murphy et al, 2001 Da/a -0.5(1.3) x
10-5.
23(No Transcript)
24(No Transcript)
25Variation of fine structure constant a
26(No Transcript)
27Many Multiplet Method(Dzuba,Flambaum, Webb)
p3/2
p3/2
p1/2
p1/2
dw gtgt dDFS !
w
w
s1/2
s1/2
a1
a2
- Advantages
- Order of magnitude gain in sensitivity
- Statistical all lines are suitable for analysis
- Observe all unverse (up to z4.2)
- Many opportunities to study systematic errors
28Quasar absorption spectra
Gas cloud
Quasar
Earth
Light
a
29Quasar absorption spectra
Gas cloud
Quasar
Earth
Light
One needs to know E(a2) for each line to do the
fitting
a
30- Use atomic calculations to find w(a).
- For a close to a0 w w0 q(a2/a02-1)
- q is found by varying a in computer codes
- q dw/dx w(0.1)-w(-0.1)/0.2, xa2/a02-1
a e2/hc0 corresponds to non-relativistic limit
(infinite c).
31- Methods were used for many important problems
- Test of Standard Model using Parity Violation in
Cs,Tl,Pb,Bi - Predicting spectrum of Fr (accuracy 0.1), etc.
32Correlation potential method
Dzuba,Flambaum,Sushkov (1989)
- Zeroth-order relativistic Hartree-Fock.
Perturbation theory in difference between exact
and Hartree-Fock Hamiltonians. - Correlation corrections accounted for by
inclusion of a correlation potential ?
In the lowest order ? is given by
- External fields included using Time-Dependent
Hartree-Fock (RPAE core polarization)correlation
s
33The correlation potential
Use the Feynman diagram technique to include
three classes of diagrams to all orders
34The correlation potential
Use the Feynman diagram technique to include
three classes of diagrams to all orders
35(No Transcript)
36Atoms of interest
Z Atom / Ion Transitions Nve1
6 C I, C II, C III p-s 4, 3, 2
8 O I p-s 4
11 Na I s-p 1
12 Mg I, Mg II s-p 2, 1
13 Al II, Al III s-p 2, 1
14 Si II, Si IV p-s 3, 1
16 S II s-p 4
20 Ca II s-p 1
22 Ti II s-p, d-p 3
24 Cr II d-p 5
25 Mn II s-p, d-p 1
26 Fe II s-p, d-p 7
28 Ni II d-p 9
30 Zn II s-p 1
1Nve number of valence electrons
37Methods of Atomic Calculations
Nve Relativistic Hartree-Fock Accuracy
1 All-orders sum of dominating diagrams 0.1-1
2-6 Configuration Interaction Many-Body Perturbation Theory 1-10
2-15 Configuration Interaction 10-20
These methods cover all periodic system of
elements
- They were used for many important problems
- Test of Standard Model using Parity Violation in
Cs, Tl - Predicting spectrum of Fr (accuracy 0.1), etc.
38Relativistic shifts-doublets
Energies of normal fine structure doublets as
functions of a2
DEA(Za)2
0 (a/a0)2
1
39Relativistic shifts-triplets
Energies of normal fine structure triplets as
functions of a2
DEA(Za)2
0 (a/a0)2
1
40Fine structure anomalies and level crossing
Energies of strongly interacting states as
functions of a2
DEA(Za)2
1D2
3P0,1,2
0 (a/a0)2
1
41Implications to study of a variation
- Not every energy interval behaves like
DEAB(Za)2 . - Strong enhancement is possible (good!).
- Level crossing may lead to instability of
calculations (bad!).
42Problem level pseudo crossing
Energy levels of Ni II as functions of a2
Values of qdE/da2 are sensitive to the
position of level crossing
0 (a/a0)2
1
43Problem level pseudo crossing
Energy levels of Ni II as functions of a2
- Values of qdE/da2 are sensitive to the
position of level crossing
Solution matching experimental g-factors
0 (a/a0)2
1
44Results of calculations (in cm-1)
Negative shifters
Anchor lines
Atom w0 q
Ni II 57420.013 -1400
Ni II 57080.373 -700
Cr II 48632.055 -1110
Cr II 48491.053 -1280
Cr II 48398.862 -1360
Fe II 62171.625 -1300
Atom w0 q
Mg I 35051.217 86
Mg II 35760.848 211
Mg II 35669.298 120
Si II 55309.3365 520
Si II 65500.4492 50
Al II 59851.924 270
Al III 53916.540 464
Al III 53682.880 216
Ni II 58493.071 -20
Positive shifters
Atom w0 q
Fe II 62065.528 1100
Fe II 42658.2404 1210
Fe II 42114.8329 1590
Fe II 41968.0642 1460
Fe II 38660.0494 1490
Fe II 38458.9871 1330
Zn II 49355.002 2490
Zn II 48841.077 1584
Also, many transitions in Mn II, Ti II, Si IV, C
II, C IV, N V, O I, Ca I, Ca II, Ge II, O II, Pb
II
Different signs and magnitudes of q provides
opportunity to study systematic errors!
45hyperfinea2 gp me / Mp atomic units
Rotationme/Mp atomic units
46(No Transcript)
47(No Transcript)
48(No Transcript)
49(No Transcript)
50(No Transcript)
51(No Transcript)
52- Murphy et al, 2003 Keck telescope, 143 systems,
23 lines, 0.2ltzlt4.2 - Da/a-0.54(0.12) x 10-5
- Quast et al, 2004 VL telescope, 1 system, Fe II,
6 lines, 5 positive q-s, one negative q, z1.15 - Da/a-0.4(1.9)(2.7) x 10-6
- Molaro et al 2007 -0.12(1.8) x 10-6 ,z1.84
5.7(2.7)x 10-6
- Srianand et al, 2004 VL telescope, 23 systems,
12 lines, Fe II, Mg I, Si II, Al II, 0.4ltzlt2.3 - Da/a-0.06(0.06) x 10-5
- Murphy et al 2007 Da/a-0.64(0.36) x 10-5
- Further revision may be necessary.
53(No Transcript)
54(No Transcript)
55Request for laboratory measurements shopping
list physics/0408017
- More accurate measurements of UV transition
frequencies - Measurements of isotopic shifts
- Cosmological evolution of isotope abundances in
the Universe - a). Systematics for the variation of a
- b). Test of theories of nuclear reactions in
stars and supernovae
56(No Transcript)
57(No Transcript)
58(No Transcript)
59Two sets of line pairs
- 1.dalt0 imitated by compression of the spectrum
- 2. dalt0 imitated by expansion of the spectrum
- Both sets give dalt0 !
60Spatial variation (Steinhardt list update)
- 10
5 Da/a - Murphy et al
- North hemisphere -0.66(12)
- South (close to North) -0.36(19)
- Strianand et al (South) -0.06(06)??
- Murphy et al (South) -0.64(36)
-
61(No Transcript)
62Measurements me / Mp or me / LQCD
- Tsanavaris,Webb,Murphy,Flambaum,
- Curran PRL 2005
- Hyperfine H/optical , 9 quasar absorption systems
with Mg,Ca,Mn,C,Si,Zn,Cr,Fe,Ni - Measured Xa2 gp me / Mp
- DX/X0.6(1.0)10-5 No variation
63Best limit from ammonia NH3Flambaum, Kozlov
PRL2007
- Inversion spectrum exponentially smallquantum
tunneling frequency winvW exp(-S) - S(me / Mp )-0.5 f(Evibration/Eatomic) ,
Evibration/Eatomic const (me / Mp )-0.5 - winv is exponentially sensitive to me / Mp
- First enhanced effect in quasar spectra, 5 times
- D(me / Mp )/ (me / Mp)-0.6(1.9)10-6 No
variation - z0.68, 6.5 billion years ago, -1(3)10-16 /year
- More accurate measurements Murphy, Flambaum,
Henkel, - Muller Science 2008 -0.74(0.47)(0.76)10-6
- Levshakov,Molaro,Kozlov2008 our Galaxy
0.5(0.14)10-7 -
64Measurements me / Mp or me / LQCD
-
- Reinhold,Buning,Hollenstein,Ivanchik,
- Petitjean,Ubachs PRL 2006 , H2 molecule, 2
systems - D(me / Mp )/ (me / Mp)-2.4(0.6)10-5 Variation
4 s ! Higher redshift, z2.8 - Space-time variation? Grand Unification model?
- 2008 Wendt,Reimers lt4.9 10-5
65(No Transcript)
66Oklo natural nuclear reactor
- n149Sm capture cross section is dominated by
- Er 0.1 eV resonance
- ShlyakhterDamour,DysonFujii et al
- Limits on variation of alpha
- Flambaum,Shuryak 2002,2003 Dmitriev,Flambaum 2003
- DEr 100 MeV DXs/Xs- 10 MevDXq/Xq 1 MeV Da/a
- Xsms/ LQCD , enhancement 100 MeV/0.1 eV109
- 2006 Gould et al, Petrov et al DEr lt0.1eV ,
- DX/X lt10-9 two billion years ago, 10-18
/year
67Oklo natural nuclear reactor
- 1.8 billion years ago
- n149Sm capture cross section is dominated by
Er 0.1 eV resonance - ShlyakhterDamour,DysonFujii et al
- DEr 1 MeV Da/a
- Limits on variation of alpha
68Oklo limits on Xqmq/ LQCD
- Flambaum,Shuryak 2002,2003 Dmitriev,Flambaum 2003
- Flambaum,Wiringa 2007
- 150Sm DEr 10 MeV DXq/Xq - 1 MeV Da/a
- Limits on xDXq/Xq - 0.1 Da/a from
- Fujii et al DErlt0.02 eV xlt2.10-9
- Petrov et al DErlt0.07 eV xlt8. 10-9
- Gould et al DErlt0.026 eV xlt3. 10-9
, lt1.6 10-18 y-1 - There is second, non-zero solution x1.0(1)
10-8
69Atomic clocks
- Cesium primary frequency standard
F4 F3
HFS of 6s
n 9 192 631 770 Hz
Also Rb, Cd, Ba, Yb, Hg, etc.
E.g. n(Hg) 40 507 347 996.841 59(14)(41) Hz
(D. J. Berkeland et al, 1998).
70Optical frequency standards
Z Atom Transition Frequency Source
20 Ca 1S0-3P1 455 986 240 494 144(5.3) Hz Degenhardt et al, 2005
38 Sr 1S0-3P1 434 829 121 311(10) kHz Ferrari et al, 2003
49 In 1S0-3P0 1 267 402 452 899 920(230) Hz von Zanthier et al, 2005
70 Yb 2S1/2-2F7/2 642 121 496 772 300(600) Hz Hosaka et al, 2005
Also H, Al, Sr, Ba, Yb, Hg, Hg, Tl, Ra, etc.
Accuracy about 10-15 can be further improved to
10-18!
71Atomic clocks
- Comparing rates of different clocks over long
period of time can be used to study time
variation of fundamental constants!
Optical transitions a Microwave
transitions a, (me, mq )/LQCD
72Advantages
- Very narrow lines, high accuracy of measurements.
- Flexibility to choose lines with larger
sensitivity to variation of fundamental
constants. - Simple interpretation (local time variation).
73Calculations to link change of frequency to
change of fundamental constants
- Optical transitions atomic calculations (as for
quasar absorption spectra) for many narrow lines
in Al II, Ca I, Sr I, Sr II, In II, Ba II, Dy I,
Yb I, Yb II, Yb III, Hg I, Hg II, Tl II, Ra II . - w w0 q(a2/a02-1)
- Microwave transitions hyperfine frequency is
sensitive to nuclear magnetic moments and nuclear
radii - We performed atomic, nuclear and QCD calculations
of powers k ,b for H,D,Rb,Cd,Cs,Yb,Hg - VC(Ry)(me/Mp)a2k (mq/LQCD)b , Dw/wDV/V
-
74Calculations to link change of frequency to
change of fundamental constants
- Optical transitions atomic calculations (as for
quasar absorption spectra) for many narrow lines
in Al II, Ca I, Sr I, Sr II, In II, Ba II, Dy I,
Yb I, Yb II, Yb III, Hg I, Hg II, Tl II, Ra II - w w0 q(a2/a02-1)
- Microwave transitions hyperfine frequency is
sensitive to a (Prestage et al), nuclear magnetic
moments (Karshenboim) and nuclear radii -
75We performed atomic, nuclear and QCD calculations
- of powers k ,b for H,D,He,Rb,Cd,Cs,Yb,Hg
- VC(Ry)(me/Mp)a2k (mq/LQCD)b , Dw/wDV/V
- 133Cs k 0.83, b-0.016
- Cs standard is insensitive to variation of
mq/LQCD! - 87Rb k 0.34, b-0.026
- 171Yb k 1.5, b-0.136
- 199Hg k 2.28, b-0.169
- 1H k 0, b-0.100
- Complete Table in arxiv0805.0462
76Results for variation of fundamental constants
Source Clock1/Clock2 da/dt/a(10-16 yr-1)
Blatt et al, 2007 Sr(opt)/Cs(hfs) -3.1(3.0)
Fortier et al 2007 Hg(opt)/Cs(hfs) -0.6(0.7)a
Rosenband et al08 Hg(opt)/Al(opt) -0.16(0.23)
Peik et al, 2006 Yb(opt)/Cs(hfs) 4(7)
Bize et al, 2005 Rb(hfs)/Cs(hfs) 1(10)a
aassuming mq/LQCD Const
Combined results d/dt lna -1.6(2.3) x 10-17
yr-1 d/dt
ln(mq/LQCD) 8(22) x10-15 yr-1
me /Mp or me/LQCD
-1.9(4.0)x10-16 yr -1
77Enhancement of relative effect
- Dy 4f105d6s E19797.96 cm-1 , q 6000
cm-1 - 4f95d26s E19797.96 cm-1 , q -23000
cm-1 - Interval Dw 10-4 cm-1
- Enhancement factor K 108 (!), i.e. Dw/w0
108 Da/a
Measurement Berkeley dlna/dt -2.9(2.6)x 10-15
yr-1
Close narrow levels in molecules and nucleus 229Th
78Dysprosium miracle
- Dy 4f105d6s E19797.96 cm-1 , q 6000
cm-1 - 4f95d26s E19797.96 cm-1 , q -23000
cm-1 - Interval Dw 10-4 cm-1
- Dzuba, Flambaum Enhancement factor K 108
(!), i.e. Dw/w0 108 Da/a
Measurements (Berkeley,Los Alamos) dlna/dt
-2.7(2.6)x 10-15 yr-1
Problem states are not narrow!
79More suggestions
Atom State1 State2 K
Ce I 5H3 2369.068 1D2 2378.827 2000
3H4 4762.718 3D2 4766.323 13000
Nd I 5K6 8411.900 7L5 8475.355 950
Nd I 7L5 11108.813 7K6 11109.167 105
Sm I 5D1 15914.55 7G2 12087.17 300
Gd II 8D11/2 4841. 106 10F9/2 4852.304 1800
Tb I 6H13/2 2771.675 8G9/2 2840.170 600
80Enhancement in molecular clocks
- DeMille 2004, DeMille et al 2008 enhancement in
Cs2 , cancellation between electron excitation
and vibration energies - Flambaum 2006 Cancellations between rotational
and hyperfine intervals in very narrow microwave
transitions in LaS, LaO, LuS,LuO, YbF, etc. - w0 Erotational -E hyperfine E hyperfine
/100-1000 - Dw/w0 K Da/a Enhancement K 102 -103
81Cancellation between fine structure and vibrations
- Flambaum, Kozlov PRL2007 K 104 -105,
- SiBr, Cl2 microwave transitions between
narrow excited states, sensitive to a and
mme/Mp - w0 E fine - Evibrational E fine /K
- Dw/w0 K (Da/a -1/4 Dm/m)
- Enhancement K 104 -105
- E fine is proportional to Z2a2
- Evibrational nw is proportional to nm0.5 ,
n1,2, - Enhancement for all molecules along the lines
Z(m,n) - Shift 0.003 Hz for Da/a10-16 width 0.01
Hz - Compare with Cs/Rb hyperfine shift 10-6 Hz
- HfF K 103 shift 0.1 Hz
82Cancellation between fine structure and rotation
in light molecules
- Bethlem,Bunning,Meijer,Ubach 2007
- OH,OD,CN,CO,CH,LiH,
- E fine is proportional to Z2a2
- Erotational is proportional to Lm , L0,1,2,
- mme/Mp
- Enhancement for all molecules along the lines
Z(m,L)
83Nuclear clocks(suggested by Peik,Tamm 2003)
- Very narrow UV transition between first excited
and ground state in 229 Th nucleus - Energy 7.6(5) eV, width 10-4 Hz
- Flambaum PRL2006
- Nuclear/QCD estimate Enhancement 105 ,
- Dw/w0 105 ( 0.1Da/a DXq/Xq)
- Xqmq/ LQCD ,
- Shift 105 Hz for Da/a10-15
- Compare with atomic clock shift 1 Hz
- 235 U energy 76 eV, width 6 10-4 Hz
84Nuclear clocks(suggested by Peik,Tamm 2003)
- Very narrow UV transition between first excited
and ground state in 229 Th nucleus Energy
7.6(5) eV, width 10-4 Hz - Flambaum 2006 He,Re 2007 Dobaczewski,
Feldmayer, Flambaum, Litvinova 2008 Flambaum,
Wiringa2008 Dmitriev, Flambaum2008 - Nuclear/QCD estimate Enhancement 105 ,
- Dw/w0 105 ( 0.1Da/a DXq/Xq )
- Xqmq/ LQCD ,
- Shift 104 Hz for Da/a10-16
- Compare with atomic clock shift 0.1 Hz
- Problem to find this narrow transition using
laser - Search Peik et al, Lu et al, Habs et al,
DeMille et al - 235 U energy 76 eV, width 6 10-4 Hz
85Why enhancement is so large?
- Total Coulomb energy 103 MeV in 229 Th
- Difference of moments of inertia between ground
and excited states 4 (Feldmaier) - If this is due to the difference in deformation,
the Coulomb energy would change by Q26 MeV - Neutron removal Q1.3 Mev
- Upper estimate for the enhancement
- Q/w0 lt 1.3 x106 eV / 7 eV 2x105
86Enhancement factors in 229Th
- a Xqmq/ LQCD
- Flambaum 2006 105 0.5 105
estimate - Hayes,Frier 2007 0 impossible arguments
- He,Ren 2007 0.04 105 0.8 105
rel.mean field - Main effect (dependence of deformation on a)
missed, change of mean-field potential only - Dobaczewski
- et al 2007 0.15 105
Hartree-Fock -
preliminary
87229Th Flambaum,Wiringa 2007
- wEpkEso 7.6 eV huge cancellations!
- Eso ltVs L Sgtspin-orbit-1.04 MeV
- Epk potentialkinetic1 MeV
- Extrapolation from light nuclei
- DEpk/Epk-1.4 Dmq/mq
- DEso/Eso-0.24 Dmq/mq
- Dw/w0 1.6 105 DXq/Xq
88229Th Flambaum,Wiringa 2007
- wEpkQEso 7.6 eV huge cancellations!
- QCoulomb105 KeV, Dobaczewski et al
- Eso ltVs L Sgtspin-orbit-1.04 MeV
- Epk potentialkinetic1 MeV
- Extrapolation from light nuclei
- DEpk/Epk-1.4 Dmq/mq
- DEso/Eso-0.24 Dmq/mq
- Dw/w0 105 ( 0.15 Da/a 1.6 DXq/Xq )
89Experimental progress in 229Th
- Transition energy measured in Livermore
- 7.6 (5) eV instead of 3.5(1.0) eV
- Intensive search for direct radiation
- Argonne
- Peik et al,
- Habs et al,
90Ultracold atomic and molecular collisions (in
Bose condensate). Cheng Chin, Flambaum PRL2006
- Enhancement near Feshbach resonance.
- Variation of scattering length
- a/aK Dm/m , K102 1012
- mme/Mp
- Hart,Xu,Legere,Gibble Nature 2007
- Accuracy in scattering length 10-6
91Evolution fundamental constants and their
dependence on gravitational potential
- Fundamental constants depend on scalar field f -
dark energy, Higgs, dilaton, distance between
branes, size of extra dimensions. - Cosmological evolution of f in space and time is
linked to evolution of matter. - Changes of Universe equation of state
- Radiation domination, cold matter domination,
dark energy domination- - Change of f - change of a(f)
92(No Transcript)
93Scalar charge-source of f
- Massive bodies have scalar charge S proportional
to the number of particles - Scalar field fS/r , proportional to
gravitational potential GM/r - - Variation of a proportional to gravitational
potential - da/aKa d(GM/rc2)
- Neutron star, white/brown dwarfs, galaxy, Earth,
Sun compare spectra, w(a)
94Dependence of fundamental constants on
gravitational potential
- Projects atomic clocks at satellites in space or
close to Sun - Earth orbit is elliptic,3 change in distance to
Sun - Fortier et al Hg(opt)/Cs , Ashby et al -H/Cs
- Flambaum,Shuryak limits on dependence of a, me/
LQCD and mq/ LQCD on gravity - da/aKa d(GM/rc2)
- Ka 0.17Ke-3.5(6.0) 10-7
- Ka 0.13 Kq2(17) 10-7
- New results from Dy, Sr/Cs
95Dysprosium da/aKa d(GM/rc2)
- Dy 4f105d6s E19797.96 cm-1 , q 6000
cm-1 - 4f95d26s E19797.96 cm-1 , q -23000
cm-1 - Interval Dw 10-4 cm-1
- Enhancement factor K 108 , i.e. Dw/w0 108
Da/a
Measurements Ferrel et al 2007 Ka-8.7(6.6) 10-6
Ke4.9(3.9) 10-6 Kq6.6(5.2) 10-6
96Sr(optical)/Cs comparison S.Blatt et al 2008
Ka2.5(3.1) 10-6 Ke-1.1(1.7) 10-6
Kq-1.9(2.7) 10-6
97Conclusions
- Quasar data MM method provided sensitivity
increase 100 times. Anchors, positive and
negative shifters-control of systematics. Keck-
variation of a, VLT-?. Systematics or spatial
variation. - me /Mp hyperfineH/optical, NH3 no variation,
H2 - variation 4 s . Space-time variation?
Grand Unification model? - Big Bang Nucleosynthesis may be interpreted as a
variation of - mq/ LQCD ?
- Oklo sensitive to mq/ LQCD ,, effect lt3 10-9
- Atomic clocks present time variation of a , m/
LQCD - Transitions between narrow close levels in atoms
and molecules huge enhancement of the relative
effect - 229Th nucleus absolute enhancement (105 times
larger shift) - Dependence of fundamental constants on
gravitational potential - No variation for small red shift, hints for
variation at high red shift
98Conclusions
- Quasar data MM method provided sensitivity
increase 100 times. Anchors, positive and
negative shifters-control of systematics. Keck-
variation of a, VLT-??? , Undiscovered
systematics or spatial variation. - me /Mp hyperfine H/optical,NH3 no variation,
H2 - variation 4 s . Space-time variation?
Grand Unification model? - Big Bang Nucleosynthesis may be interpreted as
variation of mq/ LQCD (4 s) ? - Oklo variation of mq/ LQCD ( lt10 -9 , 2.109
years ago) - Atomic clocks present time variation of a , mq/
LQCD - Transitions between narrow close levels in atoms,
molecules and nuclei huge enhancement!
99More suggestions
Atom State1 State2 K
Ce I 5H3 2369.068 1D2 2378.827 2000
3H4 4762.718 3D2 4766.323 13000
Nd I 5K6 8411.900 7L5 8475.355 950
Nd I 7L5 11108.813 7K6 11109.167 105
Sm I 5D1 15914.55 7G2 12087.17 300
Gd II 8D11/2 4841. 106 10F9/2 4852.304 1800
Tb I 6H13/2 2771.675 8G9/2 2840.170 600
E. J. Angstmann et al, submitted to J. Phys. B
100Publications
- V. A. Dzuba, V. V. Flambaum, J, K. Webb, PRL 82,
888 (1999). - V. A. Dzuba, V. V. Flambaum, J, K. Webb, PRA 59,
230 (1999). - V. A. Dzuba, V. V. Flambaum, PRA 61, 034502
(2000). - V. A. Dzuba, V. V. Flambaum, M. T. Murphy, J, K.
Webb, LNP 570, 564 (2001). - J. K. Webb et al , PRL 87, 091301 (2001).
- V. A. Dzuba, V. V. Flambaum, M. T. Murphy, J, K.
Webb, PRA 63, 042509 (2001). - M. M. Murphy et al, MNRAS, 327, 1208 (2001).
- V. A. Dzuba et al, PRA, 66, 022501 (2002).
- V. A. Dzuba, V. V. Flambaum, M. V. Marchenko, PRA
68, 022506 (2003). - E. J. Angstmann, V. A. Dzuba, V. V. Flambaum, PRA
70, 014102 (2004). - J. C. Berengat et al, PRA 70, 064101 (2004).
- M. M. Murphy et al, LNP, 648, 131 (2004).
- V. A. Dzuba, PRA, 71, 032512 (2005).
- V. A. Dzuba, V. V. Flambaum, PRA, 71, 052509
(2005). - V. A. Dzuba, V. V. Flambaum, PRA, 72, 052514
(2005). - V. A. Dzuba, PRA, 71, 062501 (2005).
- S. G. Karshenboim et al, physics/0511180.
101(No Transcript)
102(No Transcript)
103(No Transcript)
104(No Transcript)
105(No Transcript)
106(No Transcript)
107(No Transcript)
108(No Transcript)
109(No Transcript)
110(No Transcript)
111(No Transcript)
112(No Transcript)
113(No Transcript)
114(No Transcript)
115Alkali Doublet Method(Bahcall,Sargent,Varshalovic
h, Potekhin, Ivanchik, et al)
- Fine structure interval
- DFS E(p3/2) - E(p1/2) A(Za)2
- If DZ is observed at red shift Z and D0 is FS
measured on Earth then
Ivanchik et al, 1999 Da/a -3.3(6.5)(8) x
10-5. Murphy et al, 2001 Da/a -0.5(1.3) x
10-5.
116(No Transcript)
117(No Transcript)
118(No Transcript)
119(No Transcript)
120(No Transcript)
121(No Transcript)
122(No Transcript)
123(No Transcript)
124(No Transcript)
125(No Transcript)
126(No Transcript)
127(No Transcript)
128(No Transcript)
129(No Transcript)
130(No Transcript)
131(No Transcript)
132(No Transcript)
133(No Transcript)
134(No Transcript)
135(No Transcript)
136(No Transcript)
137(No Transcript)
138(No Transcript)
139(No Transcript)
140Text
141Many Multiplet Method(Flambaum, Webb, Murphy, et
al)
p3/2
p3/2
p1/2
p1/2
dw gtgt dDFS !
w
w
s1/2
s1/2
a1
a2
- Advantages
- Order of magnitude gain in sensitivity
- Statistical all lines are suitable for analysis
- Many opportunities to study systematic errors
142Atoms of interest
Z Atom / Ion Transitions Nve1
6 C I, C II, C III p-s 4, 3, 2
8 O I p-s 4
11 Na I s-p 1
12 Mg I, Mg II s-p 2, 1
13 Al II, Al III s-p 2, 1
14 Si II, Si IV p-s 3, 1
16 S II s-p 4
20 Ca II s-p 1
22 Ti II s-p, d-p 3
24 Cr II d-p 5
25 Mn II s-p, d-p 1
26 Fe II s-p, d-p 7
28 Ni II d-p 9
30 Zn II s-p 1
1Nve number of valence electrons
143Fine structure unomalies and level crossing
Energies of normal fine structure doublets as
functions of a2
DEA(Za)2
0 (a/a0)2
1
144Fine structure unomalies and level crossing
Energies of strongly interacting states as
functions of a2
DEA(Za)2
1D2
3P0,1,2
0 (a/a0)2
1
145Implications to study of a variation
- Not every fine structure interval can be used in
the analysis based on formula DEA(Za)2 (not
good!). - Strong enhancement is possible (good, but for
atomic clocks only). - Level crossing may lead to instability of
calculations (bad!).
146Problem level pseudo crossing
Energy levels of Ni II as functions of a2
Values of qdE/da2 are sensitive to the
position of level crossing
0 (a/a0)2
1
147Pb II g-factors dont help
Energy levels of Pb II as functions of a2
- Two 3D3/2 states are strongly mixed, but
g-factors do not depend on mixing.
2D3/2
2D5/2
2D3/2
2D5/2
2S1/2
Solution perform calculations with extremely
high accuracy.
4P1/2
4P5/2
4P3/2
0 (a/a0)2
1