Variation of Fundamental Constants - PowerPoint PPT Presentation

About This Presentation
Title:

Variation of Fundamental Constants

Description:

Variation of Fundamental Constants V.V. Flambaum School of Physics, UNSW, Sydney, Australia Co-authors: Atomic calculations V.Dzuba, M.Kozlov, E.Angstmann,J.Berengut ... – PowerPoint PPT presentation

Number of Views:152
Avg rating:3.0/5.0
Slides: 81
Provided by: OlegSu6
Category:

less

Transcript and Presenter's Notes

Title: Variation of Fundamental Constants


1
Variation ofFundamental Constants
  • V.V. Flambaum
  • School of Physics, UNSW, Sydney, Australia
  • Co-authors
  • Atomic calculations V.Dzuba, M.Kozlov,
    E.Angstmann,J.Berengut,M.Marchenko,Cheng
    Chin,S.Karshenboim,A.Nevsky
  • Nuclear and QCD calculations E.Shuryak,
    V.Dmitriev, D.Leinweber, A.Thomas, R.Young,
    A.Hoell, P.Jaikumar, C.Roberts,S.Wright,
    A.Tedesco, W.Wiringa
  • Cosmology J.Barrow
  • Quasar data analysis J.Webb,M.Murphy,M.Drinkwater,
    W.Walsh,P.Tsanavaris,S.Curran
  • Quasar observations C.Churchill,J.Prochazka,A.Wolf
    e,S.Muller,C,Henkel, F.Combes,
  • T.Wiklind, thanks to W.Sargent,R.Simcoe
  • Laboratory measurements S.J. Ferrel,,A,Cingoz,ALap
    piere,A.-T.Nguyen,N.Leefer, D.Budker,S.K.Lamoreuax
    ,J.R.Torgerson,S.Blatt,A.D.Ludlow,G.K.Cambell,
  • J.W.Thomsen,T.Zelevinsky,M.M.Boid,J.Ye,X.Baillard,
    M.Fouche,R.LeTargat,A.Brush,P.Lemonde,M.Takamoto,F
    .-L.Hong,H.Katori

2
Motivation
  • Extra space dimensions (Kaluza-Klein, Superstring
    and M-theories). Extra space dimensions is a
    common feature of theories unifying gravity with
    other interactions. Any change in size of these
    dimensions would manifest itself in the 3D world
    as variation of fundamental constants.
  • Scalar fields . Fundamental constants depend on
    scalar fields which vary in space and time
    (variable vacuum dielectric constant e0 ). May
    be related to dark energy and accelerated
    expansion of the Universe..
  • Fine tuning of fundamental constants is needed
    for humans to exist. Example low-energy
    resonance in production of carbon from helium in
    stars (HeHeHeC). Slightly different coupling
    constants no resonance - no life.
  • Variation of coupling constants in
    space provide natural explanation of the fine
    tuning we appeared in area of the Universe
    where values of fundamental constants are
    suitable for our existence.

3
Search for variation of fundamental constants
  • Big Bang Nucleosynthesis
  • Quasar Absorption Spectra 1
  • Oklo natural nuclear reactor
  • Atomic clocks 1
  • Enhanced effects in atoms 1, molecules1 and
    nuclei
  • Dependence on gravity

evidence?
evidences?
1 Based on atomic and molecular calculations
4
Dimensionless Constants
  • Since variation of dimensional constants
    cannot be distinguished from variation of units,
    it only makes sense to consider variation of
    dimensionless constants.
  • Fine structure constant ae2/hc1/137.036
  • Electron or quark mass/QCD strong interaction
    scale, me,q/LQCD
  • a strong (r)const/ln(r LQCD /ch)
  • me,q are proportional to Higgs vacuum (weak
    scale)

5
Variation of strong interaction
  • Grand unification models

6
Variation of strong interaction
  • Grand unification models (Marciano Calmet,
  • Fritzch Langecker, Segre, Strasser Dent)

7
Relation between variations of different coupling
constants
  • Grand unification models (Calmet,Fritzch
    Langecker, Segre, Strasser)

8
  • a 3 -1(m)a strong -1 (m)b3ln(m /LQCD )
  • a -1(m)5/3 a 1 -1(m) a 2 -1(m)

9
Dependence on quark mass
  • Dimensionless parameter is mq/LQCD . It is
    convenient to assume LQCD const, i.e. measure mq
    in units of LQCD
  • mp is proportional to (mqLQCD)1/2
    Dmp/mp0.5Dmq/mq
  • Other meson and nucleon masses remains finite for
    mq0. Dm/mK Dmq/mq
  • Argonne K are calculated for p,n,r,w,s.

10
Nuclear magnetic moments depends on p-meson mass
mp
Nucleon magnetic moment
p
n
p
p
Spin-spin interaction between valence and core
nucleons
p
n
11
  • Nucleon magnetic moment

Nucleon and meson masses
QCD calculations lattice, chiral perturbation
theory,cloudy bag model, Dyson-Schwinger and
Faddeev equations, semiempirical. Nuclear
calculations meson exchange theory of strong
interaction. Nucleon mass in kinetic energy p2/2M
12
Big Bang nucleosynthesis dependence on quark
mass
  • Flambaum, Shuryak 2002
  • Flambaum, Shuryak 2003
  • Dmitriev, Flambaum 2003
  • Dmitriev, Flambaum, Webb 2004
  • Coc, Nunes, Olive, Uzan,Vangioni 2007
  • Dent, Stern, Wetterich 2007
  • Flambaum, Wiringa 2007
  • Berengut, Dmitriev, Flambaum 2008

13
(No Transcript)
14
(No Transcript)
15
Deuterium bottleneck
  • At temeperature Tlt0.3 Mev all abundances follow
    deuteron abundance
  • (no other nuclei produced if there are no
    deuterons)
  • Reaction g d n p , exponentially small number
    of energetic photons, e-( Ed/T)
  • Exponetilal sensitivity to deuteron binding
    energy Ed , Ed2 Mev ,
  • Freezeout temeperure Tf 30 KeV

16
(No Transcript)
17
(No Transcript)
18
New BBN result
  • Dent,Stern,Wetterich 2007 Berengut, Dmitriev,
  • Flambaum 2008 dependence of BBN on energies of
    2,3H,3,4He,6,7Li ,7,8Be
  • Flambaum,Wiringa 2007 dependence of binding
    energies of 2,3H,3,4He,6,7Li, 7,8Be on nucleon
    and meson masses,
  • Flambaum,Holl,Jaikumar,Roberts,Write,
  • Maris 2006 dependence of nucleon and meson
    masses on light quark mass mq.

19
Big Bang Nucleosynthesis Dependence on mq/ LQCD
  • 2H 17.7x1.07(15) x0.009(19)
  • 4He 1-0.95x1.005(36) x-0.005(38)
  • 7Li 1-50x0.33(11) x0.013(02)
  • Final result
  • xDXq/Xq 0.013 (02), Xqmq/ LQCD

20
Big Bang Nucleosynthesis Dependence on mq/ LQCD
  • 2H 17.7x1.07(15) x0.009(19)
  • 4He 1-0.95x1.005(36) x-0.005(38)
  • 7Li 1-50x0.33(11) x0.013(02)
  • Final result
  • xDXq/Xq 0.013 (02), Xqmq/ LQCD
  • Dominated by 7Li abundance (3 times
    difference), consistent with 2H,4He
  • Nonlinear effects xDXq/Xq 0.015 (02)

21
(No Transcript)
22
Alkali Doublet Method(Bahcall,SargentVarshalovic
h, Potekhin, Ivanchik, et al)
  • Fine structure interval
  • DFS E(p3/2) - E(p1/2) A(Za)2
  • If Dz is observed at red shift z and D0 is FS
    measured on Earth then

Ivanchik et al, 1999 Da/a -3.3(6.5)(8) x
10-5. Murphy et al, 2001 Da/a -0.5(1.3) x
10-5.
23
(No Transcript)
24
(No Transcript)
25
Variation of fine structure constant a
26
(No Transcript)
27
Many Multiplet Method(Dzuba,Flambaum, Webb)
p3/2
p3/2
p1/2
p1/2
dw gtgt dDFS !
w
w
s1/2

s1/2
a1
a2
  • Advantages
  • Order of magnitude gain in sensitivity
  • Statistical all lines are suitable for analysis
  • Observe all unverse (up to z4.2)
  • Many opportunities to study systematic errors

28
Quasar absorption spectra
Gas cloud
Quasar
Earth
Light
a
29
Quasar absorption spectra
Gas cloud
Quasar
Earth
Light
One needs to know E(a2) for each line to do the
fitting
a
30
  • Use atomic calculations to find w(a).
  • For a close to a0 w w0 q(a2/a02-1)
  • q is found by varying a in computer codes
  • q dw/dx w(0.1)-w(-0.1)/0.2, xa2/a02-1

a e2/hc0 corresponds to non-relativistic limit
(infinite c).
31
  • Methods were used for many important problems
  • Test of Standard Model using Parity Violation in
    Cs,Tl,Pb,Bi
  • Predicting spectrum of Fr (accuracy 0.1), etc.

32
Correlation potential method
Dzuba,Flambaum,Sushkov (1989)
  • Zeroth-order relativistic Hartree-Fock.
    Perturbation theory in difference between exact
    and Hartree-Fock Hamiltonians.
  • Correlation corrections accounted for by
    inclusion of a correlation potential ?

In the lowest order ? is given by
  • External fields included using Time-Dependent
    Hartree-Fock (RPAE core polarization)correlation
    s

33
The correlation potential
Use the Feynman diagram technique to include
three classes of diagrams to all orders
34
The correlation potential
Use the Feynman diagram technique to include
three classes of diagrams to all orders
35
(No Transcript)
36
Atoms of interest
Z Atom / Ion Transitions Nve1
6 C I, C II, C III p-s 4, 3, 2
8 O I p-s 4
11 Na I s-p 1
12 Mg I, Mg II s-p 2, 1
13 Al II, Al III s-p 2, 1
14 Si II, Si IV p-s 3, 1
16 S II s-p 4
20 Ca II s-p 1
22 Ti II s-p, d-p 3
24 Cr II d-p 5
25 Mn II s-p, d-p 1
26 Fe II s-p, d-p 7
28 Ni II d-p 9
30 Zn II s-p 1
1Nve number of valence electrons
37
Methods of Atomic Calculations
Nve Relativistic Hartree-Fock Accuracy
1 All-orders sum of dominating diagrams 0.1-1
2-6 Configuration Interaction Many-Body Perturbation Theory 1-10
2-15 Configuration Interaction 10-20
These methods cover all periodic system of
elements
  • They were used for many important problems
  • Test of Standard Model using Parity Violation in
    Cs, Tl
  • Predicting spectrum of Fr (accuracy 0.1), etc.

38
Relativistic shifts-doublets
Energies of normal fine structure doublets as
functions of a2
DEA(Za)2
0 (a/a0)2
1
39
Relativistic shifts-triplets
Energies of normal fine structure triplets as
functions of a2
DEA(Za)2
0 (a/a0)2
1
40
Fine structure anomalies and level crossing
Energies of strongly interacting states as
functions of a2
DEA(Za)2
1D2
3P0,1,2
0 (a/a0)2
1
41
Implications to study of a variation
  • Not every energy interval behaves like
    DEAB(Za)2 .
  • Strong enhancement is possible (good!).
  • Level crossing may lead to instability of
    calculations (bad!).

42
Problem level pseudo crossing
Energy levels of Ni II as functions of a2
Values of qdE/da2 are sensitive to the
position of level crossing
0 (a/a0)2
1
43
Problem level pseudo crossing
Energy levels of Ni II as functions of a2
  • Values of qdE/da2 are sensitive to the
    position of level crossing

Solution matching experimental g-factors
0 (a/a0)2
1
44
Results of calculations (in cm-1)
Negative shifters
Anchor lines
Atom w0 q
Ni II 57420.013 -1400
Ni II 57080.373 -700
Cr II 48632.055 -1110
Cr II 48491.053 -1280
Cr II 48398.862 -1360
Fe II 62171.625 -1300
Atom w0 q
Mg I 35051.217 86
Mg II 35760.848 211
Mg II 35669.298 120
Si II 55309.3365 520
Si II 65500.4492 50
Al II 59851.924 270
Al III 53916.540 464
Al III 53682.880 216
Ni II 58493.071 -20
Positive shifters
Atom w0 q
Fe II 62065.528 1100
Fe II 42658.2404 1210
Fe II 42114.8329 1590
Fe II 41968.0642 1460
Fe II 38660.0494 1490
Fe II 38458.9871 1330
Zn II 49355.002 2490
Zn II 48841.077 1584
Also, many transitions in Mn II, Ti II, Si IV, C
II, C IV, N V, O I, Ca I, Ca II, Ge II, O II, Pb
II
Different signs and magnitudes of q provides
opportunity to study systematic errors!
45
hyperfinea2 gp me / Mp atomic units
Rotationme/Mp atomic units
46
(No Transcript)
47
(No Transcript)
48
(No Transcript)
49
(No Transcript)
50
(No Transcript)
51
(No Transcript)
52
  • Murphy et al, 2003 Keck telescope, 143 systems,
    23 lines, 0.2ltzlt4.2
  • Da/a-0.54(0.12) x 10-5
  • Quast et al, 2004 VL telescope, 1 system, Fe II,
    6 lines, 5 positive q-s, one negative q, z1.15
  • Da/a-0.4(1.9)(2.7) x 10-6
  • Molaro et al 2007 -0.12(1.8) x 10-6 ,z1.84
    5.7(2.7)x 10-6
  • Srianand et al, 2004 VL telescope, 23 systems,
    12 lines, Fe II, Mg I, Si II, Al II, 0.4ltzlt2.3
  • Da/a-0.06(0.06) x 10-5
  • Murphy et al 2007 Da/a-0.64(0.36) x 10-5
  • Further revision may be necessary.

53
(No Transcript)
54
(No Transcript)
55
Request for laboratory measurements shopping
list physics/0408017
  • More accurate measurements of UV transition
    frequencies
  • Measurements of isotopic shifts
  • Cosmological evolution of isotope abundances in
    the Universe
  • a). Systematics for the variation of a
  • b). Test of theories of nuclear reactions in
    stars and supernovae

56
(No Transcript)
57
(No Transcript)
58
(No Transcript)
59
Two sets of line pairs
  • 1.dalt0 imitated by compression of the spectrum
  • 2. dalt0 imitated by expansion of the spectrum
  • Both sets give dalt0 !

60
Spatial variation (Steinhardt list update)
  • 10
    5 Da/a
  • Murphy et al
  • North hemisphere -0.66(12)
  • South (close to North) -0.36(19)
  • Strianand et al (South) -0.06(06)??
  • Murphy et al (South) -0.64(36)

61
(No Transcript)
62
Measurements me / Mp or me / LQCD
  • Tsanavaris,Webb,Murphy,Flambaum,
  • Curran PRL 2005
  • Hyperfine H/optical , 9 quasar absorption systems
    with Mg,Ca,Mn,C,Si,Zn,Cr,Fe,Ni
  • Measured Xa2 gp me / Mp
  • DX/X0.6(1.0)10-5 No variation

63
Best limit from ammonia NH3Flambaum, Kozlov
PRL2007
  • Inversion spectrum exponentially smallquantum
    tunneling frequency winvW exp(-S)
  • S(me / Mp )-0.5 f(Evibration/Eatomic) ,
    Evibration/Eatomic const (me / Mp )-0.5
  • winv is exponentially sensitive to me / Mp
  • First enhanced effect in quasar spectra, 5 times
  • D(me / Mp )/ (me / Mp)-0.6(1.9)10-6 No
    variation
  • z0.68, 6.5 billion years ago, -1(3)10-16 /year
  • More accurate measurements Murphy, Flambaum,
    Henkel,
  • Muller Science 2008 -0.74(0.47)(0.76)10-6
  • Levshakov,Molaro,Kozlov2008 our Galaxy
    0.5(0.14)10-7

64
Measurements me / Mp or me / LQCD
  • Reinhold,Buning,Hollenstein,Ivanchik,
  • Petitjean,Ubachs PRL 2006 , H2 molecule, 2
    systems
  • D(me / Mp )/ (me / Mp)-2.4(0.6)10-5 Variation
    4 s ! Higher redshift, z2.8
  • Space-time variation? Grand Unification model?
  • 2008 Wendt,Reimers lt4.9 10-5

65
(No Transcript)
66
Oklo natural nuclear reactor
  • n149Sm capture cross section is dominated by
  • Er 0.1 eV resonance
  • ShlyakhterDamour,DysonFujii et al
  • Limits on variation of alpha
  • Flambaum,Shuryak 2002,2003 Dmitriev,Flambaum 2003
  • DEr 100 MeV DXs/Xs- 10 MevDXq/Xq 1 MeV Da/a
  • Xsms/ LQCD , enhancement 100 MeV/0.1 eV109
  • 2006 Gould et al, Petrov et al DEr lt0.1eV ,
  • DX/X lt10-9 two billion years ago, 10-18
    /year

67
Oklo natural nuclear reactor
  • 1.8 billion years ago
  • n149Sm capture cross section is dominated by
    Er 0.1 eV resonance
  • ShlyakhterDamour,DysonFujii et al
  • DEr 1 MeV Da/a
  • Limits on variation of alpha

68
Oklo limits on Xqmq/ LQCD
  • Flambaum,Shuryak 2002,2003 Dmitriev,Flambaum 2003
  • Flambaum,Wiringa 2007
  • 150Sm DEr 10 MeV DXq/Xq - 1 MeV Da/a
  • Limits on xDXq/Xq - 0.1 Da/a from
  • Fujii et al DErlt0.02 eV xlt2.10-9
  • Petrov et al DErlt0.07 eV xlt8. 10-9
  • Gould et al DErlt0.026 eV xlt3. 10-9
    , lt1.6 10-18 y-1
  • There is second, non-zero solution x1.0(1)
    10-8

69
Atomic clocks
  • Cesium primary frequency standard

F4 F3
HFS of 6s
n 9 192 631 770 Hz
Also Rb, Cd, Ba, Yb, Hg, etc.
E.g. n(Hg) 40 507 347 996.841 59(14)(41) Hz
(D. J. Berkeland et al, 1998).
70
Optical frequency standards
Z Atom Transition Frequency Source
20 Ca 1S0-3P1 455 986 240 494 144(5.3) Hz Degenhardt et al, 2005
38 Sr 1S0-3P1 434 829 121 311(10) kHz Ferrari et al, 2003
49 In 1S0-3P0 1 267 402 452 899 920(230) Hz von Zanthier et al, 2005
70 Yb 2S1/2-2F7/2 642 121 496 772 300(600) Hz Hosaka et al, 2005
Also H, Al, Sr, Ba, Yb, Hg, Hg, Tl, Ra, etc.
Accuracy about 10-15 can be further improved to
10-18!
71
Atomic clocks
  • Comparing rates of different clocks over long
    period of time can be used to study time
    variation of fundamental constants!

Optical transitions a Microwave
transitions a, (me, mq )/LQCD
72
Advantages
  • Very narrow lines, high accuracy of measurements.
  • Flexibility to choose lines with larger
    sensitivity to variation of fundamental
    constants.
  • Simple interpretation (local time variation).

73
Calculations to link change of frequency to
change of fundamental constants
  • Optical transitions atomic calculations (as for
    quasar absorption spectra) for many narrow lines
    in Al II, Ca I, Sr I, Sr II, In II, Ba II, Dy I,
    Yb I, Yb II, Yb III, Hg I, Hg II, Tl II, Ra II .
  • w w0 q(a2/a02-1)
  • Microwave transitions hyperfine frequency is
    sensitive to nuclear magnetic moments and nuclear
    radii
  • We performed atomic, nuclear and QCD calculations
    of powers k ,b for H,D,Rb,Cd,Cs,Yb,Hg
  • VC(Ry)(me/Mp)a2k (mq/LQCD)b , Dw/wDV/V

74
Calculations to link change of frequency to
change of fundamental constants
  • Optical transitions atomic calculations (as for
    quasar absorption spectra) for many narrow lines
    in Al II, Ca I, Sr I, Sr II, In II, Ba II, Dy I,
    Yb I, Yb II, Yb III, Hg I, Hg II, Tl II, Ra II
  • w w0 q(a2/a02-1)
  • Microwave transitions hyperfine frequency is
    sensitive to a (Prestage et al), nuclear magnetic
    moments (Karshenboim) and nuclear radii

75
We performed atomic, nuclear and QCD calculations
  • of powers k ,b for H,D,He,Rb,Cd,Cs,Yb,Hg
  • VC(Ry)(me/Mp)a2k (mq/LQCD)b , Dw/wDV/V
  • 133Cs k 0.83, b-0.016
  • Cs standard is insensitive to variation of
    mq/LQCD!
  • 87Rb k 0.34, b-0.026
  • 171Yb k 1.5, b-0.136
  • 199Hg k 2.28, b-0.169
  • 1H k 0, b-0.100
  • Complete Table in arxiv0805.0462

76
Results for variation of fundamental constants
Source Clock1/Clock2 da/dt/a(10-16 yr-1)
Blatt et al, 2007 Sr(opt)/Cs(hfs) -3.1(3.0)
Fortier et al 2007 Hg(opt)/Cs(hfs) -0.6(0.7)a
Rosenband et al08 Hg(opt)/Al(opt) -0.16(0.23)
Peik et al, 2006 Yb(opt)/Cs(hfs) 4(7)
Bize et al, 2005 Rb(hfs)/Cs(hfs) 1(10)a
aassuming mq/LQCD Const
Combined results d/dt lna -1.6(2.3) x 10-17
yr-1 d/dt
ln(mq/LQCD) 8(22) x10-15 yr-1
me /Mp or me/LQCD
-1.9(4.0)x10-16 yr -1
77
Enhancement of relative effect
  • Dy 4f105d6s E19797.96 cm-1 , q 6000
    cm-1
  • 4f95d26s E19797.96 cm-1 , q -23000
    cm-1
  • Interval Dw 10-4 cm-1
  • Enhancement factor K 108 (!), i.e. Dw/w0
    108 Da/a

Measurement Berkeley dlna/dt -2.9(2.6)x 10-15
yr-1
Close narrow levels in molecules and nucleus 229Th
78
Dysprosium miracle
  • Dy 4f105d6s E19797.96 cm-1 , q 6000
    cm-1
  • 4f95d26s E19797.96 cm-1 , q -23000
    cm-1
  • Interval Dw 10-4 cm-1
  • Dzuba, Flambaum Enhancement factor K 108
    (!), i.e. Dw/w0 108 Da/a

Measurements (Berkeley,Los Alamos) dlna/dt
-2.7(2.6)x 10-15 yr-1
Problem states are not narrow!
79
More suggestions
Atom State1 State2 K
Ce I 5H3 2369.068 1D2 2378.827 2000
3H4 4762.718 3D2 4766.323 13000
Nd I 5K6 8411.900 7L5 8475.355 950
Nd I 7L5 11108.813 7K6 11109.167 105
Sm I 5D1 15914.55 7G2 12087.17 300
Gd II 8D11/2 4841. 106 10F9/2 4852.304 1800
Tb I 6H13/2 2771.675 8G9/2 2840.170 600
80
Enhancement in molecular clocks
  • DeMille 2004, DeMille et al 2008 enhancement in
    Cs2 , cancellation between electron excitation
    and vibration energies
  • Flambaum 2006 Cancellations between rotational
    and hyperfine intervals in very narrow microwave
    transitions in LaS, LaO, LuS,LuO, YbF, etc.
  • w0 Erotational -E hyperfine E hyperfine
    /100-1000
  • Dw/w0 K Da/a Enhancement K 102 -103

81
Cancellation between fine structure and vibrations
  • Flambaum, Kozlov PRL2007 K 104 -105,
  • SiBr, Cl2 microwave transitions between
    narrow excited states, sensitive to a and
    mme/Mp
  • w0 E fine - Evibrational E fine /K
  • Dw/w0 K (Da/a -1/4 Dm/m)
  • Enhancement K 104 -105
  • E fine is proportional to Z2a2
  • Evibrational nw is proportional to nm0.5 ,
    n1,2,
  • Enhancement for all molecules along the lines
    Z(m,n)
  • Shift 0.003 Hz for Da/a10-16 width 0.01
    Hz
  • Compare with Cs/Rb hyperfine shift 10-6 Hz
  • HfF K 103 shift 0.1 Hz

82
Cancellation between fine structure and rotation
in light molecules
  • Bethlem,Bunning,Meijer,Ubach 2007
  • OH,OD,CN,CO,CH,LiH,
  • E fine is proportional to Z2a2
  • Erotational is proportional to Lm , L0,1,2,
  • mme/Mp
  • Enhancement for all molecules along the lines
    Z(m,L)

83
Nuclear clocks(suggested by Peik,Tamm 2003)
  • Very narrow UV transition between first excited
    and ground state in 229 Th nucleus
  • Energy 7.6(5) eV, width 10-4 Hz
  • Flambaum PRL2006
  • Nuclear/QCD estimate Enhancement 105 ,
  • Dw/w0 105 ( 0.1Da/a DXq/Xq)
  • Xqmq/ LQCD ,
  • Shift 105 Hz for Da/a10-15
  • Compare with atomic clock shift 1 Hz
  • 235 U energy 76 eV, width 6 10-4 Hz

84
Nuclear clocks(suggested by Peik,Tamm 2003)
  • Very narrow UV transition between first excited
    and ground state in 229 Th nucleus Energy
    7.6(5) eV, width 10-4 Hz
  • Flambaum 2006 He,Re 2007 Dobaczewski,
    Feldmayer, Flambaum, Litvinova 2008 Flambaum,
    Wiringa2008 Dmitriev, Flambaum2008
  • Nuclear/QCD estimate Enhancement 105 ,
  • Dw/w0 105 ( 0.1Da/a DXq/Xq )
  • Xqmq/ LQCD ,
  • Shift 104 Hz for Da/a10-16
  • Compare with atomic clock shift 0.1 Hz
  • Problem to find this narrow transition using
    laser
  • Search Peik et al, Lu et al, Habs et al,
    DeMille et al
  • 235 U energy 76 eV, width 6 10-4 Hz

85
Why enhancement is so large?
  • Total Coulomb energy 103 MeV in 229 Th
  • Difference of moments of inertia between ground
    and excited states 4 (Feldmaier)
  • If this is due to the difference in deformation,
    the Coulomb energy would change by Q26 MeV
  • Neutron removal Q1.3 Mev
  • Upper estimate for the enhancement
  • Q/w0 lt 1.3 x106 eV / 7 eV 2x105

86
Enhancement factors in 229Th
  • a Xqmq/ LQCD
  • Flambaum 2006 105 0.5 105
    estimate
  • Hayes,Frier 2007 0 impossible arguments
  • He,Ren 2007 0.04 105 0.8 105
    rel.mean field
  • Main effect (dependence of deformation on a)
    missed, change of mean-field potential only
  • Dobaczewski
  • et al 2007 0.15 105
    Hartree-Fock

  • preliminary

87
229Th Flambaum,Wiringa 2007
  • wEpkEso 7.6 eV huge cancellations!
  • Eso ltVs L Sgtspin-orbit-1.04 MeV
  • Epk potentialkinetic1 MeV
  • Extrapolation from light nuclei
  • DEpk/Epk-1.4 Dmq/mq
  • DEso/Eso-0.24 Dmq/mq
  • Dw/w0 1.6 105 DXq/Xq

88
229Th Flambaum,Wiringa 2007
  • wEpkQEso 7.6 eV huge cancellations!
  • QCoulomb105 KeV, Dobaczewski et al
  • Eso ltVs L Sgtspin-orbit-1.04 MeV
  • Epk potentialkinetic1 MeV
  • Extrapolation from light nuclei
  • DEpk/Epk-1.4 Dmq/mq
  • DEso/Eso-0.24 Dmq/mq
  • Dw/w0 105 ( 0.15 Da/a 1.6 DXq/Xq )

89
Experimental progress in 229Th
  • Transition energy measured in Livermore
  • 7.6 (5) eV instead of 3.5(1.0) eV
  • Intensive search for direct radiation
  • Argonne
  • Peik et al,
  • Habs et al,

90
Ultracold atomic and molecular collisions (in
Bose condensate). Cheng Chin, Flambaum PRL2006
  • Enhancement near Feshbach resonance.
  • Variation of scattering length
  • a/aK Dm/m , K102 1012
  • mme/Mp
  • Hart,Xu,Legere,Gibble Nature 2007
  • Accuracy in scattering length 10-6

91
Evolution fundamental constants and their
dependence on gravitational potential
  • Fundamental constants depend on scalar field f -
    dark energy, Higgs, dilaton, distance between
    branes, size of extra dimensions.
  • Cosmological evolution of f in space and time is
    linked to evolution of matter.
  • Changes of Universe equation of state
  • Radiation domination, cold matter domination,
    dark energy domination-
  • Change of f - change of a(f)

92
(No Transcript)
93
Scalar charge-source of f
  • Massive bodies have scalar charge S proportional
    to the number of particles
  • Scalar field fS/r , proportional to
    gravitational potential GM/r -
  • Variation of a proportional to gravitational
    potential
  • da/aKa d(GM/rc2)
  • Neutron star, white/brown dwarfs, galaxy, Earth,
    Sun compare spectra, w(a)

94
Dependence of fundamental constants on
gravitational potential
  • Projects atomic clocks at satellites in space or
    close to Sun
  • Earth orbit is elliptic,3 change in distance to
    Sun
  • Fortier et al Hg(opt)/Cs , Ashby et al -H/Cs
  • Flambaum,Shuryak limits on dependence of a, me/
    LQCD and mq/ LQCD on gravity
  • da/aKa d(GM/rc2)
  • Ka 0.17Ke-3.5(6.0) 10-7
  • Ka 0.13 Kq2(17) 10-7
  • New results from Dy, Sr/Cs

95
Dysprosium da/aKa d(GM/rc2)
  • Dy 4f105d6s E19797.96 cm-1 , q 6000
    cm-1
  • 4f95d26s E19797.96 cm-1 , q -23000
    cm-1
  • Interval Dw 10-4 cm-1
  • Enhancement factor K 108 , i.e. Dw/w0 108
    Da/a

Measurements Ferrel et al 2007 Ka-8.7(6.6) 10-6
Ke4.9(3.9) 10-6 Kq6.6(5.2) 10-6
96
Sr(optical)/Cs comparison S.Blatt et al 2008
  • New best limits

Ka2.5(3.1) 10-6 Ke-1.1(1.7) 10-6
Kq-1.9(2.7) 10-6
97
Conclusions
  • Quasar data MM method provided sensitivity
    increase 100 times. Anchors, positive and
    negative shifters-control of systematics. Keck-
    variation of a, VLT-?. Systematics or spatial
    variation.
  • me /Mp hyperfineH/optical, NH3 no variation,
    H2 - variation 4 s . Space-time variation?
    Grand Unification model?
  • Big Bang Nucleosynthesis may be interpreted as a
    variation of
  • mq/ LQCD ?
  • Oklo sensitive to mq/ LQCD ,, effect lt3 10-9
  • Atomic clocks present time variation of a , m/
    LQCD
  • Transitions between narrow close levels in atoms
    and molecules huge enhancement of the relative
    effect
  • 229Th nucleus absolute enhancement (105 times
    larger shift)
  • Dependence of fundamental constants on
    gravitational potential
  • No variation for small red shift, hints for
    variation at high red shift

98
Conclusions
  • Quasar data MM method provided sensitivity
    increase 100 times. Anchors, positive and
    negative shifters-control of systematics. Keck-
    variation of a, VLT-??? , Undiscovered
    systematics or spatial variation.
  • me /Mp hyperfine H/optical,NH3 no variation,
    H2 - variation 4 s . Space-time variation?
    Grand Unification model?
  • Big Bang Nucleosynthesis may be interpreted as
    variation of mq/ LQCD (4 s) ?
  • Oklo variation of mq/ LQCD ( lt10 -9 , 2.109
    years ago)
  • Atomic clocks present time variation of a , mq/
    LQCD
  • Transitions between narrow close levels in atoms,
    molecules and nuclei huge enhancement!

99
More suggestions
Atom State1 State2 K
Ce I 5H3 2369.068 1D2 2378.827 2000
3H4 4762.718 3D2 4766.323 13000
Nd I 5K6 8411.900 7L5 8475.355 950
Nd I 7L5 11108.813 7K6 11109.167 105
Sm I 5D1 15914.55 7G2 12087.17 300
Gd II 8D11/2 4841. 106 10F9/2 4852.304 1800
Tb I 6H13/2 2771.675 8G9/2 2840.170 600
E. J. Angstmann et al, submitted to J. Phys. B
100
Publications
  • V. A. Dzuba, V. V. Flambaum, J, K. Webb, PRL 82,
    888 (1999).
  • V. A. Dzuba, V. V. Flambaum, J, K. Webb, PRA 59,
    230 (1999).
  • V. A. Dzuba, V. V. Flambaum, PRA 61, 034502
    (2000).
  • V. A. Dzuba, V. V. Flambaum, M. T. Murphy, J, K.
    Webb, LNP 570, 564 (2001).
  • J. K. Webb et al , PRL 87, 091301 (2001).
  • V. A. Dzuba, V. V. Flambaum, M. T. Murphy, J, K.
    Webb, PRA 63, 042509 (2001).
  • M. M. Murphy et al, MNRAS, 327, 1208 (2001).
  • V. A. Dzuba et al, PRA, 66, 022501 (2002).
  • V. A. Dzuba, V. V. Flambaum, M. V. Marchenko, PRA
    68, 022506 (2003).
  • E. J. Angstmann, V. A. Dzuba, V. V. Flambaum, PRA
    70, 014102 (2004).
  • J. C. Berengat et al, PRA 70, 064101 (2004).
  • M. M. Murphy et al, LNP, 648, 131 (2004).
  • V. A. Dzuba, PRA, 71, 032512 (2005).
  • V. A. Dzuba, V. V. Flambaum, PRA, 71, 052509
    (2005).
  • V. A. Dzuba, V. V. Flambaum, PRA, 72, 052514
    (2005).
  • V. A. Dzuba, PRA, 71, 062501 (2005).
  • S. G. Karshenboim et al, physics/0511180.

101
(No Transcript)
102
(No Transcript)
103
(No Transcript)
104
(No Transcript)
105
(No Transcript)
106
(No Transcript)
107
(No Transcript)
108
(No Transcript)
109
(No Transcript)
110
(No Transcript)
111
(No Transcript)
112
(No Transcript)
113
(No Transcript)
114
(No Transcript)
115
Alkali Doublet Method(Bahcall,Sargent,Varshalovic
h, Potekhin, Ivanchik, et al)
  • Fine structure interval
  • DFS E(p3/2) - E(p1/2) A(Za)2
  • If DZ is observed at red shift Z and D0 is FS
    measured on Earth then

Ivanchik et al, 1999 Da/a -3.3(6.5)(8) x
10-5. Murphy et al, 2001 Da/a -0.5(1.3) x
10-5.
116
(No Transcript)
117
(No Transcript)
118
(No Transcript)
119
(No Transcript)
120
(No Transcript)
121
(No Transcript)
122
(No Transcript)
123
(No Transcript)
124
(No Transcript)
125
(No Transcript)
126
(No Transcript)
127
(No Transcript)
128
(No Transcript)
129
(No Transcript)
130
(No Transcript)
131
(No Transcript)
132
(No Transcript)
133
(No Transcript)
134
(No Transcript)
135
(No Transcript)
136
(No Transcript)
137
(No Transcript)
138
(No Transcript)
139
(No Transcript)
140
Text
141
Many Multiplet Method(Flambaum, Webb, Murphy, et
al)
p3/2
p3/2
p1/2
p1/2
dw gtgt dDFS !
w
w
s1/2

s1/2
a1
a2
  • Advantages
  • Order of magnitude gain in sensitivity
  • Statistical all lines are suitable for analysis
  • Many opportunities to study systematic errors

142
Atoms of interest
Z Atom / Ion Transitions Nve1
6 C I, C II, C III p-s 4, 3, 2
8 O I p-s 4
11 Na I s-p 1
12 Mg I, Mg II s-p 2, 1
13 Al II, Al III s-p 2, 1
14 Si II, Si IV p-s 3, 1
16 S II s-p 4
20 Ca II s-p 1
22 Ti II s-p, d-p 3
24 Cr II d-p 5
25 Mn II s-p, d-p 1
26 Fe II s-p, d-p 7
28 Ni II d-p 9
30 Zn II s-p 1
1Nve number of valence electrons
143
Fine structure unomalies and level crossing
Energies of normal fine structure doublets as
functions of a2
DEA(Za)2
0 (a/a0)2
1
144
Fine structure unomalies and level crossing
Energies of strongly interacting states as
functions of a2
DEA(Za)2
1D2
3P0,1,2
0 (a/a0)2
1
145
Implications to study of a variation
  • Not every fine structure interval can be used in
    the analysis based on formula DEA(Za)2 (not
    good!).
  • Strong enhancement is possible (good, but for
    atomic clocks only).
  • Level crossing may lead to instability of
    calculations (bad!).

146
Problem level pseudo crossing
Energy levels of Ni II as functions of a2
Values of qdE/da2 are sensitive to the
position of level crossing
0 (a/a0)2
1
147
Pb II g-factors dont help
Energy levels of Pb II as functions of a2
  • Two 3D3/2 states are strongly mixed, but
    g-factors do not depend on mixing.

2D3/2
2D5/2
2D3/2
2D5/2
2S1/2
Solution perform calculations with extremely
high accuracy.
4P1/2
4P5/2
4P3/2
0 (a/a0)2
1
Write a Comment
User Comments (0)
About PowerShow.com