MTH 101 - PowerPoint PPT Presentation

1 / 12
About This Presentation
Title:

MTH 101

Description:

N Z Q R. A-1-76. Sets. Set: Collection of objects ('elements') a A 'a is an element of A' ... For any real numbers a, b and c. Properties of Subtraction: ... – PowerPoint PPT presentation

Number of Views:174
Avg rating:3.0/5.0
Slides: 13
Provided by: lyon
Category:
Tags: mth | and

less

Transcript and Presenter's Notes

Title: MTH 101


1
MTH 101
  • PROFESSOR
  • David L. Sonnier
  • Lyon 208
  • 698-4270
  • TEXTBOOK
  • Marvin L. Bittinger, Judith A. Beecher -
  • College Algebra
  • (Available at the Lyon Bookstore)
  • On the Web
  • http//www.lyon.edu/webdata/users/dsonnier/index.h
    tml
  • (contains course information and also my slides
    in PPT, updated after each session)

2
The Set of Real Numbers
N
Natural Numbers
1
, 2, 3, . . .
Z
Integers
. . . , 2, 1, 0, 1, 2, . . .
__
3
2
Q
Rational Numbers
4
, 0, 8,

,

, 3.14, 5.27
27

5
3
3
I
Irrational Numbers
2

, ?
7
, 1.414213 . . .

3
2

?
R
Real Numbers
7
, 0,
5

,

, 3.14, 0.33
3

,
3
A-1-75
3
Subsets of the Set of Real Numbers
Natural N
Integers Z
Rational Q
Real R
Q
R
Q
Z
N
N ? Z ? Q ? R
A-1-76
4
Subsets of the Set of Real Numbers
Natural
numbers (N)
Integers (Z)
Zero
Rational
numbers (Q)
Negatives
Real
Noninteger
of natural numbers
numbers (R)
ratios
of integers
Irrational
numbers (I)
N ? Z ? Q ? R
A-1-76
5
Sets
  • Set Collection of objects (elements)
  • a?A a is an element of A
    a is a member of A
  • a?A a is not an element of
    A
  • A a1, a2, , an A contains
  • Order of elements is meaningless
  • It does not matter how often the same element is
    listed.

6
Sets of Numbers
  • Standard Sets
  • Natural numbers N 1, 2, 3,
  • Whole numbers N 0, 1, 2, 3,
  • Integers Z , -2, -1, 0, 1, 2,
  • Positive Integers Z 1, 2, 3, 4,
  • Real Numbers R 47.3, -12, ?,
  • Rational Numbers Q 1.5, 2.6, -3.8, 15,
    (correct definition will follow)

7
Set Builder Notation
  • Rational Numbers The integers and all quotients
    of integers (excluding division by 0).
  • a and b are integers and b ? 0
  • In some cases this is easier than the Roster
    Method
  • Irrational Number? Any real number that is not
    rational.

8
Properties of Real Numbers
Let R be the set of real numbers and let x, y,
and z be arbitrary elements of R.
Equivalent Expressions
4x 7x 11x
Properties of Addition
Commutative Law ab ba Associative
Law a(bc) (ab) c Additive Identity a0
0a a Additive Inverse -a a a (-a) 0
A-1-77(a)
9
Properties of Real Numbers
Theorem 1
For any real number a -1 a - a and (-
a) a
Properties of Multiplication
Commutative ab ba Associative a(bc)
(ab)c Multiplicative Identity a1 1 a
a Distributive a(bc) ab
ac Multiplicative Inverse
A-1-77(a)
10
Properties of Real Numbers
For any real numbers a, b and c
a b c if and only if b c a a b a
(-b)
Properties of Subtraction
Distributive Law of multiplicaton over
subtraction a(b-c) ab ac
A-1-77(a)
11
Properties of Real Numbers
Theorem 4
For any real number a and any nonzero number b
a b a ( )
1 b
A-1-77(a)
12
HOMEWORK!!!!!!
Page 9
1-57, EOO (Every Other Odd) problems (1, 5, 9,
13, ) Or, using set-builder notation x x
1 is a multiple of 4 and x lt 58
A-1-77(a)
Write a Comment
User Comments (0)
About PowerShow.com