Title: A1259775953gNIvx
1Fred J. Grieman
Phase Equilibria 2Phase Equilibria and Phase
Diagrams
Point Plot phases as a f(T,P) Define
regions of particular phase stability
equilibrium lines between phases
2sublimation
Phase transitions deposition
Phase Equilibria Solid
Liquid
Gas Structure organized
disorganized disorganized Densi
ty high
high
low Intermolecular small
small large
distance
liquefication
vaporization solidification
condensation
fusion
gas V
liquid solid
m.p. b.p. T
At constant pressure
Return to Slide 5
3Thermodynamics Enthalpy ?Hfus ?Hvap gt 0
?Hsub ?Hfus ?Hvap gt
0 Entropy ?Sfus ?Svap gt 0
?Ssub ?Sfus ?Svap gt 0 Free
?Gfus ?Hfus - T?Sfus Energy ?Gvap
?Hvap - T?Svap etc.
4- Example ethanol CH3CH2OH
- eth(l) ? eth(g) ?H?vap, 352 39.2 kJ/mol
Tob 351.7K -
normal - Vapor pressure at 351.7K?
-
1 atm. - ?G?vap, 352 ?
- 0 at equilibrium
- T 298K Use App. D in text
- eth(l) ? eth(g)
- ?H?f, 298 (kJ/mol) -277.1 -235.1
?H?vap, 298 42.0 kJ/mol - S?298 (J/molK) 161.0 281.6
?S?vap, 298 120.6 J/molK - Estimate of Tb assume ?H?vap ?S?vap, 298 ?
f(T) - Tb ?H?vap, 298 / ?S?vap, 298 42.0 kJ/mol
/.1206 kJ/molK
5b) Vapor pressure at 298K eth(l) ? eth(g)
? ?G?vap,298 ?H?vap - T?S?vap
42.0 - 298(.1206) 6.04 kJ/mol
Spontaneous?? Keq Peth/1 e- ?G?vap,298/RT
0.0874 atm 66.4 torr (Thought experiments
Vapor pressure in equilibrium with liquid)
Ethanol (g)
Vacuum
Go to equilibrium
Peq ? 0.0874 atm the vapor
pressure
T 298 K
Ethanol (l)
Ethanol (l)
Piston
1 atm.
1 atm.
heat ?
Ethanol T 298 K Constant P
298 K lt T lt 351.7K What happens? Liquid is heated
liquid
liquid
1 atm.
T just 351.7 K What happens?
1 atm.
heat ?
T ? 351.7K Until When?
liquid
liquid
Slide 2
When liquid completely evaporates, then gas heats
and T gt 351.7 K
6Constant T 298 K Ethanol
P lt .0874 atm.
P just .0874 atm.
What Happens? Higher density gas
increase pressure
gas
P ? .0874 atm.
P
Move piston down.
P gt .0874 atm.
What Happens?
After gas completely condenses, pressure increases
.
Liquid condenses
increase pressure
liquid
c) Vapor Pressure Temperature Dependence (1st
equilibrium curve!!) -lnKeq
?G?rxn/RT ?H?/RT - ?S?/R assume
?H? ?S? ? f(T) ln K(T2) ln K(T2)
? then ln K(T2)/K(T1) -(?H?/R)1/T2
1/T1 For vaporization ln Keq ln P/1 where
P vapor pressure ln
P2/P1 -(?H?vap/R)1/T2 1/T1
Clausius-Clapeyron Eq. Defines an equilibrium
curve between liquid and gas
P vs. T
7Phase Diagrams P
?G 0 Ggas Gliq
Solid
Gliq lt Ggas
Liquid
Ggas lt Gliq Gsol lt
Gliq Ggas
Gas
T
Gas Phase/Liq Phase
Equilibrium ln P2/P1 -(?H?vap/R)1/T2
1/T1
Phase Equilibria in general (Clapeyron Eq.)
dP/dT ?Hp.c. / T?Vp.c. For Sol ? Liq ?
Gas, ? Hp.c gt 0 ?V usually gt 0 so dP/dT gt 0
positive slope
8Phase Diagrams P
Solid
Liquid
Gas
T
Pc
Ptp
Ttp
Tc
Triple Point, all three phases simultaneously in
equilibrium
Critical Point Point beyond which there is no
longer distinction
between liquid and gas Examples
9Phase diagrams
Negative slope!!
Logarithmic Scale
10Ice The 4 linear hydrogen bonds each water
molecule makes results in open structure and
lower density of ice compared water at 0?C
11Water Phase Diagrams
dP/dT lt 0 Higher pressure favors the denser
phase (liquid in H2O case) Increase P, lowers
melting point glacier going around rock
12Possibly different solid phases - Allotropes At
least 13 forms of solid water Carbon 3 solid
allotropes graphite, diamond,
buckminsterfullerene Equilibrium lines between
these phases as well
13Carbon
Manufactured Diamonds