Inference on SPMs: Random Field Theory - PowerPoint PPT Presentation

1 / 54
About This Presentation
Title:

Inference on SPMs: Random Field Theory

Description:

Activations don't look like Gaussian blobs. Need realistic shapes, sparse representation ... Sensitive to blob-defining-threshold. Signal magnitude ... – PowerPoint PPT presentation

Number of Views:102
Avg rating:3.0/5.0
Slides: 55
Provided by: ten55
Category:

less

Transcript and Presenter's Notes

Title: Inference on SPMs: Random Field Theory


1
Inference on SPMsRandom Field Theory
Alternatives
  • Thomas Nichols, Ph.D.
  • Director, Modelling GeneticsGlaxoSmithKline
    Clinical Imaging Centre
  • http//www.fmrib.ox.ac.uk/nichols
  • ICN SPM Course
  • May 8, 2008

2
image data
parameter estimates
designmatrix
kernel
Thresholding Random Field Theory
  • General Linear Model
  • model fitting
  • statistic image

realignment motioncorrection
smoothing
normalisation
StatisticalParametric Map
anatomicalreference
Corrected thresholds p-values
3
Assessing StatisticImages
4
Assessing Statistic Images
  • Wheres the signal?

High Threshold
Med. Threshold
Low Threshold
Good SpecificityPoor Power(risk of false
negatives)
Poor Specificity(risk of false positives)Good
Power
...but why threshold?!
5
Blue-sky inferenceWhat wed like
  • Dont threshold, model the signal!
  • Signal location?
  • Estimates and CIs on(x,y,z) location
  • Signal magnitude?
  • CIs on change
  • Spatial extent?
  • Estimates and CIs on activation volume
  • Robust to choice of cluster definition
  • ...but this requires an explicit spatial model

space
6
Blue-sky inferenceWhat we need
  • Need an explicit spatial model
  • No routine spatial modeling methods exist
  • High-dimensional mixture modeling problem
  • Activations dont look like Gaussian blobs
  • Need realistic shapes, sparse representation
  • Some work by Hartvig et al., Penny et al.

7
Real-life inferenceWhat we get
  • Signal location
  • Local maximum no inference
  • Center-of-mass no inference
  • Sensitive to blob-defining-threshold
  • Signal magnitude
  • Local maximum intensity P-values ( CIs)
  • Spatial extent
  • Cluster volume P-value, no CIs
  • Sensitive to blob-defining-threshold

8
Voxel-level Inference
  • Retain voxels above ?-level threshold u?
  • Gives best spatial specificity
  • The null hyp. at a single voxel can be rejected

u?
space
Significant Voxels
No significant Voxels
9
Cluster-level Inference
  • Two step-process
  • Define clusters by arbitrary threshold uclus
  • Retain clusters larger than ?-level threshold k?

uclus
space
Cluster not significant
Cluster significant
k?
k?
10
Cluster-level Inference
  • Typically better sensitivity
  • Worse spatial specificity
  • The null hyp. of entire cluster is rejected
  • Only means that one or more of voxels in
    cluster active

uclus
space
Cluster not significant
Cluster significant
k?
k?
11
Set-level Inference
  • Count number of blobs c
  • Minimum blob size k
  • Worst spatial specificity
  • Only can reject global null hypothesis

uclus
space
k
k
Here c 1 only 1 cluster larger than k
12
Multiple comparisons
13
Hypothesis Testing
  • Null Hypothesis H0
  • Test statistic T
  • t observed realization of T
  • ? level
  • Acceptable false positive rate
  • Level ? P( Tgtu? H0 )
  • Threshold u? controls false positive rate at
    level ?
  • P-value
  • Assessment of t assuming H0
  • P( T gt t H0 )
  • Prob. of obtaining stat. as largeor larger in a
    new experiment
  • P(DataNull) not P(NullData)

14
Multiple Comparisons Problem
  • Which of 100,000 voxels are sig.?
  • ?0.05 ? 5,000 false positive voxels
  • Which of (random number, say) 100 clusters
    significant?
  • ?0.05 ? 5 false positives clusters

15
MCP SolutionsMeasuring False Positives
  • Familywise Error Rate (FWER)
  • Familywise Error
  • Existence of one or more false positives
  • FWER is probability of familywise error
  • False Discovery Rate (FDR)
  • FDR E(V/R)
  • R voxels declared active, V falsely so
  • Realized false discovery rate V/R

16
MCP SolutionsMeasuring False Positives
  • Familywise Error Rate (FWER)
  • Familywise Error
  • Existence of one or more false positives
  • FWER is probability of familywise error
  • False Discovery Rate (FDR)
  • FDR E(V/R)
  • R voxels declared active, V falsely so
  • Realized false discovery rate V/R

17
FWE Multiple comparisons terminology
  • Family of hypotheses
  • Hk k ? ? 1,,K
  • H? ? Hk
  • Familywise Type I error
  • weak control omnibus test
  • Pr(reject H? ? H?) ? ?
  • anything, anywhere ?
  • strong control localising test
  • Pr(reject HW ? HW) ? ?
  • ? W W ? ? HW
  • anything, where ?
  • Adjusted pvalues
  • test level at which reject Hk

18
FWE MCP Solutions Bonferroni
  • For a statistic image T...
  • Ti ith voxel of statistic image T
  • ...use ? ?0/V
  • ?0 FWER level (e.g. 0.05)
  • V number of voxels
  • u? ?-level statistic threshold, P(Ti ? u?) ?
  • By Bonferroni inequality...
  • FWER P(FWE) P( ?i Ti ? u? H0) ? ?i
    P( Ti ? u? H0 )
  • ?i ? ?i ?0 /V ?0

Conservative under correlation Independent V
tests Some dep. ? tests Total dep. 1 test
19
Random field theory
20
SPM approachRandom fields
  • Consider statistic image as lattice
    representation of a continuous random field
  • Use results from continuous random field theory

? lattice represtntation
21
FWER MCP Solutions Controlling FWER w/ Max
  • FWER distribution of maximum
  • FWER P(FWE) P( ?i Ti ? u Ho) P(
    maxi Ti ? u Ho)
  • 100(1-?)ile of max distn controls FWER
  • FWER P( maxi Ti ? u? Ho) ?
  • where
  • u? F-1max (1-?)
  • .

u?
22
FWER MCP SolutionsRandom Field Theory
  • Euler Characteristic ?u
  • Topological Measure
  • blobs - holes
  • At high thresholds,just counts blobs
  • FWER P(Max voxel ? u Ho) P(One or more
    blobs Ho) ? P(?u ? 1 Ho) ? E(?u Ho)

Threshold
Random Field
No holes
Never more than 1 blob
Suprathreshold Sets
23
RFT DetailsExpected Euler Characteristic
  • E(?u) ? ?(?) ?1/2 (u 2 -1) exp(-u 2/2) / (2?)2
  • ? ? Search region ? ? R3
  • ?(?? ? volume
  • ?1/2 ? roughness
  • Assumptions
  • Multivariate Normal
  • Stationary
  • ACF twice differentiable at 0
  • Stationary
  • Results valid w/out stationary
  • More accurate when stat. holds

24
Random Field TheorySmoothness Parameterization
  • E(?u) depends on ?1/2
  • ? roughness matrix
  • Smoothness parameterized as Full Width at Half
    Maximum
  • FWHM of Gaussian kernel needed to smooth a
    whitenoise random field to roughness ?

25
Random Field TheorySmoothness Parameterization
  • RESELS
  • Resolution Elements
  • 1 RESEL FWHMx?? FWHMy?? FWHMz
  • RESEL Count R
  • R ?(?) ? ? (4log2)3/2 ?(?) / ( FWHMx??
    FWHMy?? FWHMz )
  • Volume of search region in units of smoothness
  • Eg 10 voxels, 2.5 FWHM 4 RESELS
  • Beware RESEL misinterpretation
  • RESEL are not number of independent things in
    the image
  • See Nichols Hayasaka, 2003, Stat. Meth. in Med.
    Res.
  • .

26
Random Field TheorySmoothness Estimation
  • Smoothness estdfrom standardizedresiduals
  • Variance ofgradients
  • Yields resels pervoxel (RPV)
  • RPV image
  • Local roughness est.
  • Can transform in to local smoothness est.
  • FWHM Img (RPV Img)-1/D
  • Dimension D, e.g. D2 or 3

27
Random Field Intuition
  • Corrected P-value for voxel value t
  • Pc P(max T gt t) ? E(?t) ? ?(?) ?1/2 t2
    exp(-t2/2)
  • Statistic value t increases
  • Pc decreases (but only for large t)
  • Search volume increases
  • Pc increases (more severe MCP)
  • Roughness increases (Smoothness decreases)
  • Pc increases (more severe MCP)

28
RFT DetailsUnified Formula
  • General form for expected Euler characteristic
  • ?2, F, t fields restricted search regions
    D dimensions
  • E?u(W) Sd Rd (W) rd (u)

Rd (W) d-dimensional Minkowski functional of
W function of dimension, space W and
smoothness R0(W) ?(W) Euler characteristic
of W R1(W) resel diameter R2(W) resel
surface area R3(W) resel volume
rd (W) d-dimensional EC density of Z(x)
function of dimension and threshold, specific
for RF type E.g. Gaussian RF r0(u) 1- ?(u)
r1(u) (4 ln2)1/2 exp(-u2/2) /
(2p) r2(u) (4 ln2) exp(-u2/2) /
(2p)3/2 r3(u) (4 ln2)3/2 (u2 -1) exp(-u2/2)
/ (2p)2 r4(u) (4 ln2)2 (u3 -3u) exp(-u2/2)
/ (2p)5/2
?
29
Random Field TheoryCluster Size Tests
  • Expected Cluster Size
  • E(S) E(N)/E(L)
  • S cluster size
  • N suprathreshold volume?(T gt uclus)
  • L number of clusters
  • E(N) ?(?) P( T gt uclus )
  • E(L) ? E(?u)
  • Assuming no holes

30
Random Field TheoryCluster Size Distribution
  • Gaussian Random Fields (Nosko, 1969)
  • D Dimension of RF
  • t Random Fields (Cao, 1999)
  • B Beta distn
  • Us ?2s
  • c chosen s.t.E(S) E(N) / E(L)

31
Random Field TheoryCluster Size Corrected
P-Values
  • Previous results give uncorrected P-value
  • Corrected P-value
  • Bonferroni
  • Correct for expected number of clusters
  • Corrected Pc E(L) Puncorr
  • Poisson Clumping Heuristic (Adler, 1980)
  • Corrected Pc 1 - exp( -E(L) Puncorr )

32
ReviewLevels of inference power
Set level Cluster level Voxel level
33
Random Field Theory Limitations
  • Sufficient smoothness
  • FWHM smoothness 3-4 voxel size (Z)
  • More like 10 for low-df T images
  • Smoothness estimation
  • Estimate is biased when images not sufficiently
    smooth
  • Multivariate normality
  • Virtually impossible to check
  • Several layers of approximations
  • Stationary required for cluster size results

34
Real Data
  • fMRI Study of Working Memory
  • 12 subjects, block design Marshuetz et al (2000)
  • Item Recognition
  • ActiveView five letters, 2s pause, view probe
    letter, respond
  • Baseline View XXXXX, 2s pause, view Y or N,
    respond
  • Second Level RFX
  • Difference image, A-B constructedfor each
    subject
  • One sample t test

35
Real DataRFT Result
  • Threshold
  • S 110,776
  • 2 ? 2 ? 2 voxels5.1 ? 5.8 ? 6.9 mmFWHM
  • u 9.870
  • Result
  • 5 voxels above the threshold
  • 0.0063 minimumFWE-correctedp-value

-log10 p-value
36
Real DataSnPM Promotional
  • Nonparametric method more powerful than RFT for
    low DF
  • Variance Smoothing even more sensitive
  • FWE controlled all the while!

37
False Discovery Rate
38
MCP SolutionsMeasuring False Positives
  • Familywise Error Rate (FWER)
  • Familywise Error
  • Existence of one or more false positives
  • FWER is probability of familywise error
  • False Discovery Rate (FDR)
  • FDR E(V/R)
  • R voxels declared active, V falsely so
  • Realized false discovery rate V/R

39
False Discovery Rate
  • For any threshold, all voxels can be
    cross-classified
  • Realized FDR
  • rFDR V0R/(V1RV0R) V0R/NR
  • If NR 0, rFDR 0
  • But only can observe NR, dont know V1R V0R
  • We control the expected rFDR
  • FDR E(rFDR)

40
False Discovery RateIllustration
Noise
Signal
SignalNoise
41
Control of Per Comparison Rate at 10
Percentage of Null Pixels that are False Positives
Control of Familywise Error Rate at 10
FWE
Occurrence of Familywise Error
Control of False Discovery Rate at 10
Percentage of Activated Pixels that are False
Positives
42
Benjamini HochbergProcedure
  • Select desired limit q on FDR
  • Order p-values, p(1) ? p(2) ? ... ? p(V)
  • Let r be largest i such that
  • Reject all hypotheses corresponding to p(1),
    ... , p(r).

JRSS-B (1995)57289-300
1
p(i)
p-value
i/V ? q
0
0
1
i/V
43
Adaptiveness of Benjamini Hochberg FDR
Ordered p-values p(i)
P-value threshold when no signal ?/V
P-value thresholdwhen allsignal ?
Fractional index i/V
44
Benjamini Hochberg Procedure Details
  • Standard Result
  • Positive Regression Dependency on Subsets
  • P(X1?c1, X2?c2, ..., Xk?ck Xixi) is
    non-decreasing in xi
  • Only required of null xis
  • Positive correlation between null voxels
  • Positive correlation between null and signal
    voxels
  • Special cases include
  • Independence
  • Multivariate Normal with all positive
    correlations
  • Arbitrary covariance structure
  • Replace q by q/c(V), c(V) ?i1,...,V 1/i ?
    log(V)0.5772
  • Much more stringent

Benjamini Yekutieli (2001).Ann.
Stat.291165-1188
45
Benjamini HochbergKey Properties
  • FDR is controlled E(rFDR) ? q
    m0/V
  • Conservative, if large fraction of nulls false
  • Adaptive
  • Threshold depends on amount of signal
  • More signal, More small p-values,More p(i) less
    than i/V ? q/c(V)

46
Controlling FDRVarying Signal Extent
p z
1
47
Controlling FDRVarying Signal Extent
p z
2
48
Controlling FDRVarying Signal Extent
p z
3
49
Controlling FDRVarying Signal Extent
p 0.000252 z 3.48
4
50
Controlling FDRVarying Signal Extent
p 0.001628 z 2.94
5
51
Controlling FDRVarying Signal Extent
p 0.007157 z 2.45
6
52
Controlling FDRVarying Signal Extent
p 0.019274 z 2.07
7
53
Controlling FDRBenjamini Hochberg
  • Illustrating BH under dependence
  • Extreme example of positive dependence

1
p(i)
p-value
i/V ? q/c(V)
0
0
1
i/V
54
Real Data FDR Example
  • Threshold
  • Indep/PosDepu 3.83
  • Arb Covu 13.15
  • Result
  • 3,073 voxels aboveIndep/PosDep u
  • lt0.0001 minimumFDR-correctedp-value

FDR Threshold 3.833,073 voxels
55
Conclusions
  • Must account for multiplicity
  • Otherwise have a fishing expedition
  • FWER
  • Very specific, not very sensitive
  • FDR
  • Less specific, more sensitive
  • Sociological calibration still underway

56
References
  • Most of this talk covered in these papers
  • TE Nichols S Hayasaka, Controlling the
    Familywise Error Rate in Functional Neuroimaging
    A Comparative Review. Statistical Methods in
    Medical Research, 12(5) 419-446, 2003.
  • TE Nichols AP Holmes, Nonparametric
    Permutation Tests for Functional Neuroimaging A
    Primer with Examples. Human Brain Mapping,
    151-25, 2001.
  • CR Genovese, N Lazar TE Nichols, Thresholding
    of Statistical Maps in Functional Neuroimaging
    Using the False Discovery Rate. NeuroImage,
    15870-878, 2002.
Write a Comment
User Comments (0)
About PowerShow.com