Title: Inference on SPMs: Random Field Theory
1Inference on SPMsRandom Field Theory
Alternatives
- Thomas Nichols, Ph.D.
- Director, Modelling GeneticsGlaxoSmithKline
Clinical Imaging Centre - http//www.fmrib.ox.ac.uk/nichols
- ICN SPM Course
- May 8, 2008
2image data
parameter estimates
designmatrix
kernel
Thresholding Random Field Theory
- General Linear Model
- model fitting
- statistic image
realignment motioncorrection
smoothing
normalisation
StatisticalParametric Map
anatomicalreference
Corrected thresholds p-values
3Assessing StatisticImages
4Assessing Statistic Images
High Threshold
Med. Threshold
Low Threshold
Good SpecificityPoor Power(risk of false
negatives)
Poor Specificity(risk of false positives)Good
Power
...but why threshold?!
5Blue-sky inferenceWhat wed like
- Dont threshold, model the signal!
- Signal location?
- Estimates and CIs on(x,y,z) location
- Signal magnitude?
- CIs on change
- Spatial extent?
- Estimates and CIs on activation volume
- Robust to choice of cluster definition
- ...but this requires an explicit spatial model
space
6Blue-sky inferenceWhat we need
- Need an explicit spatial model
- No routine spatial modeling methods exist
- High-dimensional mixture modeling problem
- Activations dont look like Gaussian blobs
- Need realistic shapes, sparse representation
- Some work by Hartvig et al., Penny et al.
7Real-life inferenceWhat we get
- Signal location
- Local maximum no inference
- Center-of-mass no inference
- Sensitive to blob-defining-threshold
- Signal magnitude
- Local maximum intensity P-values ( CIs)
- Spatial extent
- Cluster volume P-value, no CIs
- Sensitive to blob-defining-threshold
8Voxel-level Inference
- Retain voxels above ?-level threshold u?
- Gives best spatial specificity
- The null hyp. at a single voxel can be rejected
u?
space
Significant Voxels
No significant Voxels
9Cluster-level Inference
- Two step-process
- Define clusters by arbitrary threshold uclus
- Retain clusters larger than ?-level threshold k?
uclus
space
Cluster not significant
Cluster significant
k?
k?
10Cluster-level Inference
- Typically better sensitivity
- Worse spatial specificity
- The null hyp. of entire cluster is rejected
- Only means that one or more of voxels in
cluster active
uclus
space
Cluster not significant
Cluster significant
k?
k?
11Set-level Inference
- Count number of blobs c
- Minimum blob size k
- Worst spatial specificity
- Only can reject global null hypothesis
uclus
space
k
k
Here c 1 only 1 cluster larger than k
12Multiple comparisons
13Hypothesis Testing
- Null Hypothesis H0
- Test statistic T
- t observed realization of T
- ? level
- Acceptable false positive rate
- Level ? P( Tgtu? H0 )
- Threshold u? controls false positive rate at
level ? - P-value
- Assessment of t assuming H0
- P( T gt t H0 )
- Prob. of obtaining stat. as largeor larger in a
new experiment - P(DataNull) not P(NullData)
14Multiple Comparisons Problem
- Which of 100,000 voxels are sig.?
- ?0.05 ? 5,000 false positive voxels
- Which of (random number, say) 100 clusters
significant? - ?0.05 ? 5 false positives clusters
15MCP SolutionsMeasuring False Positives
- Familywise Error Rate (FWER)
- Familywise Error
- Existence of one or more false positives
- FWER is probability of familywise error
- False Discovery Rate (FDR)
- FDR E(V/R)
- R voxels declared active, V falsely so
- Realized false discovery rate V/R
16MCP SolutionsMeasuring False Positives
- Familywise Error Rate (FWER)
- Familywise Error
- Existence of one or more false positives
- FWER is probability of familywise error
- False Discovery Rate (FDR)
- FDR E(V/R)
- R voxels declared active, V falsely so
- Realized false discovery rate V/R
17FWE Multiple comparisons terminology
- Family of hypotheses
- Hk k ? ? 1,,K
- H? ? Hk
- Familywise Type I error
- weak control omnibus test
- Pr(reject H? ? H?) ? ?
- anything, anywhere ?
- strong control localising test
- Pr(reject HW ? HW) ? ?
- ? W W ? ? HW
- anything, where ?
- Adjusted pvalues
- test level at which reject Hk
18FWE MCP Solutions Bonferroni
- For a statistic image T...
- Ti ith voxel of statistic image T
- ...use ? ?0/V
- ?0 FWER level (e.g. 0.05)
- V number of voxels
- u? ?-level statistic threshold, P(Ti ? u?) ?
- By Bonferroni inequality...
- FWER P(FWE) P( ?i Ti ? u? H0) ? ?i
P( Ti ? u? H0 ) - ?i ? ?i ?0 /V ?0
Conservative under correlation Independent V
tests Some dep. ? tests Total dep. 1 test
19Random field theory
20SPM approachRandom fields
- Consider statistic image as lattice
representation of a continuous random field - Use results from continuous random field theory
? lattice represtntation
21FWER MCP Solutions Controlling FWER w/ Max
- FWER distribution of maximum
- FWER P(FWE) P( ?i Ti ? u Ho) P(
maxi Ti ? u Ho) - 100(1-?)ile of max distn controls FWER
- FWER P( maxi Ti ? u? Ho) ?
- where
- u? F-1max (1-?)
- .
u?
22FWER MCP SolutionsRandom Field Theory
- Euler Characteristic ?u
- Topological Measure
- blobs - holes
- At high thresholds,just counts blobs
- FWER P(Max voxel ? u Ho) P(One or more
blobs Ho) ? P(?u ? 1 Ho) ? E(?u Ho)
Threshold
Random Field
No holes
Never more than 1 blob
Suprathreshold Sets
23RFT DetailsExpected Euler Characteristic
- E(?u) ? ?(?) ?1/2 (u 2 -1) exp(-u 2/2) / (2?)2
- ? ? Search region ? ? R3
- ?(?? ? volume
- ?1/2 ? roughness
- Assumptions
- Multivariate Normal
- Stationary
- ACF twice differentiable at 0
- Stationary
- Results valid w/out stationary
- More accurate when stat. holds
24Random Field TheorySmoothness Parameterization
- E(?u) depends on ?1/2
- ? roughness matrix
- Smoothness parameterized as Full Width at Half
Maximum - FWHM of Gaussian kernel needed to smooth a
whitenoise random field to roughness ?
25Random Field TheorySmoothness Parameterization
- RESELS
- Resolution Elements
- 1 RESEL FWHMx?? FWHMy?? FWHMz
- RESEL Count R
- R ?(?) ? ? (4log2)3/2 ?(?) / ( FWHMx??
FWHMy?? FWHMz ) - Volume of search region in units of smoothness
- Eg 10 voxels, 2.5 FWHM 4 RESELS
- Beware RESEL misinterpretation
- RESEL are not number of independent things in
the image - See Nichols Hayasaka, 2003, Stat. Meth. in Med.
Res. - .
26Random Field TheorySmoothness Estimation
- Smoothness estdfrom standardizedresiduals
- Variance ofgradients
- Yields resels pervoxel (RPV)
- RPV image
- Local roughness est.
- Can transform in to local smoothness est.
- FWHM Img (RPV Img)-1/D
- Dimension D, e.g. D2 or 3
27Random Field Intuition
- Corrected P-value for voxel value t
- Pc P(max T gt t) ? E(?t) ? ?(?) ?1/2 t2
exp(-t2/2) - Statistic value t increases
- Pc decreases (but only for large t)
- Search volume increases
- Pc increases (more severe MCP)
- Roughness increases (Smoothness decreases)
- Pc increases (more severe MCP)
28RFT DetailsUnified Formula
- General form for expected Euler characteristic
- ?2, F, t fields restricted search regions
D dimensions - E?u(W) Sd Rd (W) rd (u)
Rd (W) d-dimensional Minkowski functional of
W function of dimension, space W and
smoothness R0(W) ?(W) Euler characteristic
of W R1(W) resel diameter R2(W) resel
surface area R3(W) resel volume
rd (W) d-dimensional EC density of Z(x)
function of dimension and threshold, specific
for RF type E.g. Gaussian RF r0(u) 1- ?(u)
r1(u) (4 ln2)1/2 exp(-u2/2) /
(2p) r2(u) (4 ln2) exp(-u2/2) /
(2p)3/2 r3(u) (4 ln2)3/2 (u2 -1) exp(-u2/2)
/ (2p)2 r4(u) (4 ln2)2 (u3 -3u) exp(-u2/2)
/ (2p)5/2
?
29Random Field TheoryCluster Size Tests
- Expected Cluster Size
- E(S) E(N)/E(L)
- S cluster size
- N suprathreshold volume?(T gt uclus)
- L number of clusters
- E(N) ?(?) P( T gt uclus )
- E(L) ? E(?u)
- Assuming no holes
30Random Field TheoryCluster Size Distribution
- Gaussian Random Fields (Nosko, 1969)
- D Dimension of RF
- t Random Fields (Cao, 1999)
- B Beta distn
- Us ?2s
- c chosen s.t.E(S) E(N) / E(L)
31Random Field TheoryCluster Size Corrected
P-Values
- Previous results give uncorrected P-value
- Corrected P-value
- Bonferroni
- Correct for expected number of clusters
- Corrected Pc E(L) Puncorr
- Poisson Clumping Heuristic (Adler, 1980)
- Corrected Pc 1 - exp( -E(L) Puncorr )
32ReviewLevels of inference power
Set level Cluster level Voxel level
33Random Field Theory Limitations
- Sufficient smoothness
- FWHM smoothness 3-4 voxel size (Z)
- More like 10 for low-df T images
- Smoothness estimation
- Estimate is biased when images not sufficiently
smooth - Multivariate normality
- Virtually impossible to check
- Several layers of approximations
- Stationary required for cluster size results
34Real Data
- fMRI Study of Working Memory
- 12 subjects, block design Marshuetz et al (2000)
- Item Recognition
- ActiveView five letters, 2s pause, view probe
letter, respond - Baseline View XXXXX, 2s pause, view Y or N,
respond - Second Level RFX
- Difference image, A-B constructedfor each
subject - One sample t test
35Real DataRFT Result
- Threshold
- S 110,776
- 2 ? 2 ? 2 voxels5.1 ? 5.8 ? 6.9 mmFWHM
- u 9.870
- Result
- 5 voxels above the threshold
- 0.0063 minimumFWE-correctedp-value
-log10 p-value
36Real DataSnPM Promotional
- Nonparametric method more powerful than RFT for
low DF - Variance Smoothing even more sensitive
- FWE controlled all the while!
37False Discovery Rate
38MCP SolutionsMeasuring False Positives
- Familywise Error Rate (FWER)
- Familywise Error
- Existence of one or more false positives
- FWER is probability of familywise error
- False Discovery Rate (FDR)
- FDR E(V/R)
- R voxels declared active, V falsely so
- Realized false discovery rate V/R
39False Discovery Rate
- For any threshold, all voxels can be
cross-classified - Realized FDR
- rFDR V0R/(V1RV0R) V0R/NR
- If NR 0, rFDR 0
- But only can observe NR, dont know V1R V0R
- We control the expected rFDR
- FDR E(rFDR)
40False Discovery RateIllustration
Noise
Signal
SignalNoise
41Control of Per Comparison Rate at 10
Percentage of Null Pixels that are False Positives
Control of Familywise Error Rate at 10
FWE
Occurrence of Familywise Error
Control of False Discovery Rate at 10
Percentage of Activated Pixels that are False
Positives
42Benjamini HochbergProcedure
- Select desired limit q on FDR
- Order p-values, p(1) ? p(2) ? ... ? p(V)
- Let r be largest i such that
- Reject all hypotheses corresponding to p(1),
... , p(r).
JRSS-B (1995)57289-300
1
p(i)
p-value
i/V ? q
0
0
1
i/V
43Adaptiveness of Benjamini Hochberg FDR
Ordered p-values p(i)
P-value threshold when no signal ?/V
P-value thresholdwhen allsignal ?
Fractional index i/V
44Benjamini Hochberg Procedure Details
- Standard Result
- Positive Regression Dependency on Subsets
- P(X1?c1, X2?c2, ..., Xk?ck Xixi) is
non-decreasing in xi - Only required of null xis
- Positive correlation between null voxels
- Positive correlation between null and signal
voxels - Special cases include
- Independence
- Multivariate Normal with all positive
correlations - Arbitrary covariance structure
- Replace q by q/c(V), c(V) ?i1,...,V 1/i ?
log(V)0.5772 - Much more stringent
Benjamini Yekutieli (2001).Ann.
Stat.291165-1188
45Benjamini HochbergKey Properties
- FDR is controlled E(rFDR) ? q
m0/V - Conservative, if large fraction of nulls false
- Adaptive
- Threshold depends on amount of signal
- More signal, More small p-values,More p(i) less
than i/V ? q/c(V)
46Controlling FDRVarying Signal Extent
p z
1
47Controlling FDRVarying Signal Extent
p z
2
48Controlling FDRVarying Signal Extent
p z
3
49Controlling FDRVarying Signal Extent
p 0.000252 z 3.48
4
50Controlling FDRVarying Signal Extent
p 0.001628 z 2.94
5
51Controlling FDRVarying Signal Extent
p 0.007157 z 2.45
6
52Controlling FDRVarying Signal Extent
p 0.019274 z 2.07
7
53Controlling FDRBenjamini Hochberg
- Illustrating BH under dependence
- Extreme example of positive dependence
1
p(i)
p-value
i/V ? q/c(V)
0
0
1
i/V
54Real Data FDR Example
- Threshold
- Indep/PosDepu 3.83
- Arb Covu 13.15
- Result
- 3,073 voxels aboveIndep/PosDep u
- lt0.0001 minimumFDR-correctedp-value
FDR Threshold 3.833,073 voxels
55Conclusions
- Must account for multiplicity
- Otherwise have a fishing expedition
- FWER
- Very specific, not very sensitive
- FDR
- Less specific, more sensitive
- Sociological calibration still underway
56References
- Most of this talk covered in these papers
- TE Nichols S Hayasaka, Controlling the
Familywise Error Rate in Functional Neuroimaging
A Comparative Review. Statistical Methods in
Medical Research, 12(5) 419-446, 2003. - TE Nichols AP Holmes, Nonparametric
Permutation Tests for Functional Neuroimaging A
Primer with Examples. Human Brain Mapping,
151-25, 2001. - CR Genovese, N Lazar TE Nichols, Thresholding
of Statistical Maps in Functional Neuroimaging
Using the False Discovery Rate. NeuroImage,
15870-878, 2002.