Guerino Mazzola - PowerPoint PPT Presentation

About This Presentation
Title:

Guerino Mazzola

Description:

Kelvin Null. Akroasis. Immaculate. Concept. Synthesis. Software. Presto RUBATO NeXT. Mac OS X ... Mod = category of modules diaffine morphisms: A = R-module, ... – PowerPoint PPT presentation

Number of Views:85
Avg rating:3.0/5.0
Slides: 31
Provided by: stefan106
Category:

less

Transcript and Presenter's Notes

Title: Guerino Mazzola


1
Mathematical Music Theory Status Quo 2000
  • Guerino Mazzola
  • U ETH Zürich
  • Internet Institute for Music Science
  • guerino_at_mazzola.ch
  • www.encyclospace.org

2
  • Time Table
  • The Concept Framework
  • Global Classification
  • Models and Methods
  • Towards Grand Unification

Contents
3
Theory
Grants
Software
Kelvin Null
Akroasis
Gruppentheore-tische Methode in der Musik
M(2,Z)\Z2 Karajan
Time
Gruppen und Kategorien in der Musik
Depth-EEG for Consonances and Dissonances
Presto
Synthesis
Geometrie der Töne
Immaculate Concept
RUBATO Project
Morphologie abendländischer Harmonik
Kuriose Geschichte
RUBATO NeXT
KiT-MaMuTh Project
Mac OS X
Kunst der Fuge
Topos of Music
4
  • Mod category of modules diaffine morphisms
  • A R-module, B S-module
  • Dilin(A,B) (l,f) fA B additive,
    lR S ring homomorphism f(r.a)
    l(r).f(a)
  • eb(x) bx translation on B
  • A_at_B eB.Dilin(A,B)

Concepts
eb.f A B B
5
Topos of presheaves over Mod Mod_at_ F Mod
Sets, contravariant Example representable
presheaf _at_B _at_B(A) A_at_B F(A) A_at_F A
address
Concepts
Yoneda Lemma The functor _at_ Mod Mod_at_ is
fully faithfull. B gt _at_B
6
Concepts
  • Database Management Systems
  • require recursively stable object types!
  • k Î B
  • K Î 2B no module!
  • Need more general spaces F

B _at_ 0_at_B
K Í 0_at_B
K Í A _at_B
  • A n sequences (b0,b1,,bn)
  • A B self-addressed tones
  • Need general addresses A

F W_at_B A 0
K Î A _at_F F presheaf over Mod
F _at_B
7
F Form name one of four space types a
diagramn v in Mod_at_
Forms
a monomorphism in Mod_at_ id Functor(F) gt
Frame(v)
Concepts
  • Frame(v)-space for type
  • simple v Ægt _at_B simple(v) _at_B
  • limit v Form-Name-Diagram Mod_at_
  • limit(v) lim(Form-Name-Diagram Mod_at_)
  • colimit v Form-Name-Diagram Mod_at_
  • colimit(v) colim(Form-Name-Diagram Mod_at_)
  • power v Form-Name F gt Functor(F)
  • power(v) WFunctor(F)

8
Denotators
D denotator name
Concepts
K Î A _at_ Functor(F) A-valued point
Form F
9
MakroNote
  • Ornaments
  • Schenker Analysis

Concepts
10
RUBATO
Concepts
11
Galois Theory
Form Theory
Defining equation
Defining diagram
Concepts
fS(X) 0
id v(F)
Field S
Form System
Mariana Montiel Hernandez, UNAM
12
Category Loc of local compositions Type
PowerF gt Functor(F) G
Classification
local composition K Î A_at_WG K Í _at_A G
generalizes K Í A_at_G objective local
compositions
K Í _at_A G
_at_a h
f/a
L Í _at_B H
13
ObLoc
Loc
Classification
ObLocA
LocA
  • Theorem
  • Loc is finitely complete (while ObLoc is not!)
  • On ObLocA and LocA Embedding and Trace
  • are an adjoint pair
  • ObLocA(Embedding(K),L) _at_ LocA(K,Trace(L))

14
Classification
15
Category Gl of global compositions Objects KI
functor K which is covered by a finite
atlas I (Ki) of local compositions in LocA
at address A Morphisms KI at address A
LJ at address B f/a KI LJ f
natural transformation, a A B address
change f induces local morphisms fij/a on the
charts
Classification
16
Have Grothendieck topology Cov(Gl) on
Gl Covering families (fi/ai KIi LJ)i are
finite, generating families.
Classification
  • Theorem
  • Cov(Gl) is subcanonical
  • The presheaf GF KI gt GF(KI) of global affine
    functions is a sheaf.

17
Have universal construction of a resolution of
KI res ADn KI It is determined only by
the KI address A and the nerve n of the covering
atlas I.
Classification
18
  • Theorem (global addressed geometric
    classification)
  • Let A locally free of finie rank over
    commutative ring R
  • Consider the objective global compositions KI at
    A with ()
  • locally free chart modules R.Ki
  • the function modules GF(Ki) are projective
  • (i) Then KI can be reconstructed from the
    coefficient system of
  • retracted functions
  • resF(KI) Í F(ADn)
  • (ii) There is a subscheme Jn of a projective
    R-scheme of finite type whose points w Spec(S)
    Jn parametrize the isomorphism classes of
    objective global compositions at address SRA
    with ().

Classification
19
  • Applications of classification
  • String Quartet Theory Why four strings?
  • Composition Generic compositional material
  • Performance Theory Why deformation?

Classification
20
  • There are models for these musicological topics
  • Tonal modulation in well-tempered and
    just intonation and general scales
  • Classical Fuxian counterpoint rules
  • Harmonic function theory
  • String quartet theory
  • Performance theory
  • Melody and motive theory
  • Metrical and rhythmical structures
  • Canons
  • Large forms (e.g. sonata scheme)
  • Enharmonic identification

Models
21
What is a mathematical model of a musical
phenomenon?
Mathematics
Music
  • Field of Concepts
  • Material Selection
  • Process Type
  • Grown rules for process
  • construction and
  • analysis

Models
Deduction of rules from structure theorems
Why this material, these rules, relations?
Generalization!
Anthropomorphic Principle!
22
Arnold Schönberg Harmonielehre (1911)
Old Tonality Neutral Degrees (IC, VIC)
Modulation Degrees (IIF, IVF, VIIF)
New Tonality Cadence Degrees (IIF VF)
Models
  • What is the considered set of tonalities?
  • What is a degree?
  • What is a cadence?
  • What is the modulation mechanism?
  • How do these structures determine the modulation
    degrees?

23
Models
24
Models
25
Models
26
12 _at_ 3 x 4
Unification
K 12 e.0,3,4,7,8,9 consonances
D 12 e.1,2,5,6,10,11 dissonances
27
Unification
28
12 _at_ 0 _at_ 12
29
D C-dominant triad T C-tonic triad
K
30
The Topos of Music Geometric Logic of Concepts,
Theory, and Performance
in collaboration with Moreno Andreatta, Jan
Beran, Chantal Buteau, Karlheinz Essl, Roberto
Ferretti, Anja Fleischer, Harald Fripertinger,
Jörg Garbers, Stefan Göller, Werner Hemmert,
Mariana Montiel, Andreas Nestke, Thomas Noll,
Joachim Stange-Elbe, Oliver Zahorka
www.encylospace.org
Write a Comment
User Comments (0)
About PowerShow.com