Kein Folientitel - PowerPoint PPT Presentation

About This Presentation
Title:

Kein Folientitel

Description:

What is a mathematical model of a musical phenomenon? Field of Concepts. Material Selection ... Deictic (Shifters) 2. Motivated/Compound Predicates: Logical. Geometric ... – PowerPoint PPT presentation

Number of Views:64
Avg rating:3.0/5.0
Slides: 28
Provided by: mazz1
Category:

less

Transcript and Presenter's Notes

Title: Kein Folientitel


1
Penser la musique dans la logique fonctorielle des
topoi
Guerino Mazzola U ETH Zürich Internet
Institute for Music Science guerino_at_mazzola.ch www
.encyclospace.org
2
  • Topographie musicale
  • Stratification sémiotique
  • Models mathématiques
  • Espaces de concepts
  • Fiction et facticité
  • Vérité et beauté

programme
3
topographie
4
topographie
5
topographie
T(E) (dvE/dE)-1 q /sec
6
topographie
Tonal modulation G major E b major
7
Hjelmslev Stratification
Expression
Signification
Content
stratification
connotation
motivation
meta system
8
Stratification on the mental level
denotator layer
forms
topoi
stratification
score layer
classical sheaves
interpretation layer
performance fields
differential geometry
9
What is a mathematical model of a musical
phenomenon?
Mathematics
Music
  • Field of Concepts
  • Material Selection
  • Process Type
  • Grown rules for process
  • construction and
  • analysis

models
Deduction of rules from structure theorems
Why this material, these rules, relations?
Generalization!
Anthropic Principle!
10
Arnold Schönberg Harmonielehre (1911)
Old Tonality Neutral Degrees (IC, VIC)
Modulation Degrees (IIF, IVF, VIIF)
New Tonality Cadence Degrees (IIF VF)
models
  • What is the considered set of tonalities?
  • What is a degree?
  • What is a cadence?
  • What is the modulation mechanism?
  • How do these structures determine the modulation
    degrees?

11
models
12
models
13
models
14
Denotators
D denotator name
concepts
K Î A _at_ Functor(F) A-valued point
Form F
DA.F(K)
15
F Form name one of four space types a
name diagram v in Mod_at_
Forms
a monomorphism in Mod_at_ id Functor(F) gt
Frame(v)
concepts
  • Frame(v)-space for type
  • simple v gt _at_B simple(v) _at_B
  • limit v Form-Name-Diagram Mod_at_
  • limit(v) lim(Form-Name-Diagram Mod_at_)
  • colimit v Form-Name-Diagram Mod_at_
  • colimit(v) colim(Form-Name-Diagram Mod_at_)
  • power v Form-Name F gt Functor(F)
  • power(v) WFunctor(F)

16
MakroNote
  • Ornaments
  • Schenker Analysis

concepts
17
Galois Theory
Form Theory
Defining equation
Defining diagram
concepts
fS(X) 0
id v(F)
Field S
Form System
18
RUBATO
concepts
Os X
19
(Textual) Predicates
Exi
facticité
Sig
D/Exi
20
What is facticity of predicate Ex at denotator D?
D/Ex A.TRUTH(F)(d) TRUTH(F) space of
subsets of space F of truth values d Î W
F(A) d Í _at_A x F
facticité
The coordinate d of a truth denotator D/Ex is a
sieve in A x F.
21
Special case 1 I 0-module Then F _at_0
final object 1 in Mod_at_ d Î W1(A) W (A)
A 0 W (0) Hom(1, W) set of
topos-theoretic truth values
Sub(_at_0) Special values d ˆ F ? T, d
_at_0 T
facticité
22
Special case 2 I /Ÿ S circle group, F
_at_S. d Î W F(A) means this Take again
special address A 0, i.e., d Í _at_S In
particular, if d d_at_, d 0,e Í S an
interval, we have fuzzy logic defined by the
truth quantity e in the closed unit interval.
facticité
23
Summary
  • The truth denotators D/Ex
  • associated with a predicate Ex
  • are local compositions
  • at address A
  • and in the truth space F.
  • They generalize and unify
  • the topos-theoretic and fuzzy logic values, and
  • classical objects of music theory.

facticité
24
Classification of Predicate Constructions
  • 1. Arbitrary/Atomic Predicates
  • Mathematical
  • Musical (Primavista)
  • Deictic (Shifters)
  • 2. Motivated/Compound Predicates
  • Logical
  • Geometric

facticité
D/Ex
25
beauté
26
TON C, F, A , D , G , C , F, B, E, A, D,
G val T,S, D, t, s, d S /Ÿ F _at_S, A
0
beauté
RieMD,d(Chord(222)) d d_at_, d 0,e Í S
T,v D ,d
27
TON C, F, A , D , G , C , F, B, E, A, D,
G Val T,S, D, t, s, d, T,S, D, t, s,
d F Chords(Ÿ12) TRUTH(F) sets of chords
in F
beauté
RieNT,v(Chord) dChord.Ext0(MT,v) MT,v
monoid of all endomorphisms of prototypical
triadic chords Ext0(MT,v) chords
invariant under MT,v basic open set in
the extension topology
Write a Comment
User Comments (0)
About PowerShow.com