Title: Kein Folientitel
1Penser la musique dans la logique fonctorielle des
topoi
Guerino Mazzola U ETH Zürich Internet
Institute for Music Science guerino_at_mazzola.ch www
.encyclospace.org
2- Topographie musicale
- Stratification sémiotique
- Models mathématiques
- Espaces de concepts
- Fiction et facticité
- Vérité et beauté
programme
3topographie
4topographie
5topographie
T(E) (dvE/dE)-1 q /sec
6topographie
Tonal modulation G major E b major
7Hjelmslev Stratification
Expression
Signification
Content
stratification
connotation
motivation
meta system
8Stratification on the mental level
denotator layer
forms
topoi
stratification
score layer
classical sheaves
interpretation layer
performance fields
differential geometry
9What is a mathematical model of a musical
phenomenon?
Mathematics
Music
- Field of Concepts
- Material Selection
- Process Type
- Grown rules for process
- construction and
- analysis
models
Deduction of rules from structure theorems
Why this material, these rules, relations?
Generalization!
Anthropic Principle!
10Arnold Schönberg Harmonielehre (1911)
Old Tonality Neutral Degrees (IC, VIC)
Modulation Degrees (IIF, IVF, VIIF)
New Tonality Cadence Degrees (IIF VF)
models
- What is the considered set of tonalities?
- What is a degree?
- What is a cadence?
- What is the modulation mechanism?
- How do these structures determine the modulation
degrees?
11models
12models
13models
14Denotators
D denotator name
concepts
K Î A _at_ Functor(F) A-valued point
Form F
DA.F(K)
15 F Form name one of four space types a
name diagram v in Mod_at_
Forms
a monomorphism in Mod_at_ id Functor(F) gt
Frame(v)
concepts
- Frame(v)-space for type
- simple v gt _at_B simple(v) _at_B
- limit v Form-Name-Diagram Mod_at_
- limit(v) lim(Form-Name-Diagram Mod_at_)
- colimit v Form-Name-Diagram Mod_at_
- colimit(v) colim(Form-Name-Diagram Mod_at_)
- power v Form-Name F gt Functor(F)
- power(v) WFunctor(F)
16MakroNote
- Ornaments
- Schenker Analysis
concepts
17Galois Theory
Form Theory
Defining equation
Defining diagram
concepts
fS(X) 0
id v(F)
Field S
Form System
18RUBATO
concepts
Os X
19(Textual) Predicates
Exi
facticité
Sig
D/Exi
20What is facticity of predicate Ex at denotator D?
D/Ex A.TRUTH(F)(d) TRUTH(F) space of
subsets of space F of truth values d Î W
F(A) d Í _at_A x F
facticité
The coordinate d of a truth denotator D/Ex is a
sieve in A x F.
21Special case 1 I 0-module Then F _at_0
final object 1 in Mod_at_ d Î W1(A) W (A)
A 0 W (0) Hom(1, W) set of
topos-theoretic truth values
Sub(_at_0) Special values d ˆ F ? T, d
_at_0 T
facticité
22Special case 2 I /Ÿ S circle group, F
_at_S. d Î W F(A) means this Take again
special address A 0, i.e., d Í _at_S In
particular, if d d_at_, d 0,e Í S an
interval, we have fuzzy logic defined by the
truth quantity e in the closed unit interval.
facticité
23Summary
- The truth denotators D/Ex
- associated with a predicate Ex
- are local compositions
- at address A
- and in the truth space F.
- They generalize and unify
- the topos-theoretic and fuzzy logic values, and
- classical objects of music theory.
facticité
24Classification of Predicate Constructions
- 1. Arbitrary/Atomic Predicates
- Mathematical
- Musical (Primavista)
- Deictic (Shifters)
- 2. Motivated/Compound Predicates
- Logical
- Geometric
facticité
D/Ex
25beauté
26TON C, F, A , D , G , C , F, B, E, A, D,
G val T,S, D, t, s, d S /Ÿ F _at_S, A
0
beauté
RieMD,d(Chord(222)) d d_at_, d 0,e Í S
T,v D ,d
27TON C, F, A , D , G , C , F, B, E, A, D,
G Val T,S, D, t, s, d, T,S, D, t, s,
d F Chords(Ÿ12) TRUTH(F) sets of chords
in F
beauté
RieNT,v(Chord) dChord.Ext0(MT,v) MT,v
monoid of all endomorphisms of prototypical
triadic chords Ext0(MT,v) chords
invariant under MT,v basic open set in
the extension topology