16-735 Paper Presentation - PowerPoint PPT Presentation

About This Presentation
Title:

16-735 Paper Presentation

Description:

Based on multiscale pyramids of bitmap arrays of and (not analytically defined ... Workspace bitmap: BM: W (1,0) x BM (x) where BM(x) = 0 represents Wfree ... – PowerPoint PPT presentation

Number of Views:92
Avg rating:3.0/5.0
Slides: 23
Provided by: kurti
Learn more at: http://www.cs.cmu.edu
Category:

less

Transcript and Presenter's Notes

Title: 16-735 Paper Presentation


1
16-735 Paper PresentationNumerical Potential
Field Techniques for Robot Path Planning
  • Sept, 19, 2007
  • NSH 3211
  • Hyun Soo Park, Iacopo Gentilini

Barraquand, J., Langlois, B., and Latombe,
J.-C.IEEE Transactions on Systems, Man and
CyberneticsVolume 22, Issue 2, Mar/Apr 1992 ,
pages 224 - 241
2
How to generate collision free paths?
1. Global approach
  • building a connectivity graph of collision
    free configuration
  • searching the graph for a path (e.g. network
    of one dimensional curves)

Image from Numerical Potential Field Techniques
for Robot Path Planning
2. Local approach
- searching a grid placed across the robots
configuration using heuristic functions (e.g.
tangent bug, potential field)
3
Differences between global and local?
1. Global approach
  • advantages very quick search in the
    connectivity graph
  • disadvantages expensive precomputation step to
    get the graph (exponential in the dimension n
    of the configuration space Q where n is number
    of the robots degrees of freedom)

2. Local approach
  • advantages no precomputation needed
  • disadvantages - search graph considerably
    larger than
    connectivity graph
    - dead ends (local minima)

4
How to combine advantages of both?
  1. Incrementally build a graph connecting the local
    minima of potential functions defined over the
    configuration space ? (no expensive
    precomputation)
  2. Concurrently searching this graph until the goal
    is reached ? escaping local minima (search within
    much smaller search graph)
  • Based on multiscale pyramids of bitmap arrays of
    ? and ? (not analytically defined potential
    function)

5
Basic functions
1. Forward kinematic X R Q ? W (p,
q) ? x X (p, q) where p ? R is a point
in the robot
  • Workspace bitmap BM W ? (1,0)
  • x ? BM (x) where BM(x)
    0 represents Wfree
  • - discrete grid GW workspace
    representation is given as a grid at a 512512
    level of resolution using a scaling factor 2 a
    pyramid of representations is also computed
    until the coarsest resolution level 1616 is
    reached - ? is the distance between two
    adjacent points (? min 1/512 and ? max
    1/16 if given in percentage of the workspace
    diameter)
  • - a 1-neighborhood is used, that means 4
    neighbors in 2D, 6 neighbors in 3D, and 2n
    neighbors in n-D within the discrete grid
  • - preparation a wavefront expansion is
    computed by setting each point in GWfree
    neighbor of boundary or of GWOi to 1 than the
    neighbors of this new points to 2 and so on
    until all GWfree has been explored
  • k-neighborhood with k ? 1,r of a point x in a
    grid of dimension r is defined as the set of
    points in the grid having at most k coordinates
    differing from those of x
  • k 1 ? 2 r points
  • k 2 ? 2 r2 points
  • k r ? 3r -1points

6
Basic functions
  • Configuration space? is also discretized in a
    n-dimensional grid ?? and ?? free
  • - the resolution is defined as the
    logarithm of the inverse of the distance
    between two discretizaton points - the
    resolution r of ?? is also
  • - for any given workspace resolution r,
    the corrisponding resolution Ri of the
    discretization of ? along the qi axis is chosen
    in such a way that a modification of qi by
    ?i generates a small motion of the robot (any
    point p of R moves less than nbtol ? )
  • where

7
How are potential functions built?
W-potential - computed in W
Q-potential - defined over Q
where G is called the arbitration
function - good Q-potential in ?
(whose dimension is big) - if Vpi are
free of local minimawe can not assume that U is
free of local minima it depends on
thedefinition of G
where pi are the control pointsin the
robot R - small dimension of ? (2 or 3)
for low cost information - have to be
built such that they are free of local minima
(neededprecomputation)
8
W-Potential
1. Simple W-Potential
  • get the position of control point p in ? and its
    goal position xgoal
  • set Vp 0 at xgoal
  • set the neighbors in ?? free of xgoal to 1 and
    so on

Image from Numerical Potential Field Techniques
for Robot Path Planning
-?Vp is the direction to goal
2. Improved W-Potential
  • build the workspace skeleton S as subset of ??
    free computing the wavefront expansion
  • connect xgoal to ? and compute Vp in the
    augmented S using a queue of points of S sorted
    by decreasing value
  • compute Vp in ?? free \ ? as shown in 1.

Image from Numerical Potential Field Techniques
for Robot Path Planning
Image from Numerical Potential Field Techniques
for Robot Path Planning
9
Q-Potential
  • attracts control points pi toward their
    respective goal position
  • arbitration function definition (minimize local
    minima!)
  • - concurrent attraction causes local minima
  • - concurrent attraction compensed- avoid zero
    value when one point have reached the goal

10
Techniques to construct local-minima graph
  1. Best First motion
  2. Random motion
  3. Valley-guided motion
  4. Constrained motion

11
Best First Motion and Random Motion Technique
1. Best-First Motion Technique
2. Random Motion Technique
Agitation
12
Best First Motion and Random Motion Technique
1. Best-First Motion Technique
  • - Good for n lt 4
  • What if n is getting bigger?
  • ? Searching unit increases in almost exponential
    order ( ) as increasing DOF
  • ? Thus, we need another algorithm to search
    local minima

2. Random Motion Technique
- The number of iteration can be specified by
user so that this algorithm performs fast.
13
Random Motion Technique
Local Minimum Detection
Limited number of searching iteration If U(q) gt
U(q), then q is successor ? Gradient motion If
NO q, then q is local minimum
14
Random Motion Technique
Path Joining Adjacent Local Minima
Smoothing
This can be performed concurrently on a parallel
computer because of no need to communicate
between the different processing unit ? Random
motion
15
Random Motion Technique
Dead-end
No more local minima near current position
Drawback No guarantee to find a path whenever
one exists. However, by property of Brownian
Motion, as the number of iteration of random
motion,
16
Random Motion Technique
PDF for Brownian Motion can be described as
Gaussian Distribution Function
Probability of location of qi after time t (end
of random motion)
At the boundary of obstacles, usually random
motion reflects to tangent hyperplane of
obstacles when motion collides against obstacles
but this paper implemented as substituting by
new random motion generation.
17
Random Motion Technique
Duration of Random Motion
Should not be too short ? No chance to escape
Should not be too long ? waste of time and no
gradient motion
Attraction Radius ( )
18
Random Motion Technique
Duration of Random Motion
Since attraction radius cant exceed workspace
diameter, by normalizing it to 1, we can obtain,
Finally, we have
Due to
19
Valley Guided Motion Technique
Searching valleys V of Q-potential U in Qfree
  • using -?U calculated in qstart and qgoal reach to
    local minima qi and qg
  • search V for a path connecting qi and qg.
    Atevery crossroad a decision is made using
    anheuristic function defined as Q-potential
    Uheur
  • if step b. is successful, path is
    calculated,otherwise failure

Best experimental Q-potential function
Image from Numerical Potential Field Techniques
for Robot Path Planning
where s is a small number
20
Valley Guided Motion Technique
When a point q ? Q is a valley points (q ? V)?
  • compute U(q)
  • compute the 2n values of U at the 1-neihbors of
    q
  • for each possible valley direction i ? 1,n
  • compare U(q) to the 2n 2 values of U at the
    1-neighbors in the hyperplane orthogonal to the
    qi axis
  • if U(q) is smaller or equal to these 2n 2
    values, q is a valley point.

q
n 2
- complexity is O(n2) or if using 2-neighborhood
O(n4) - better using n-neighborhood but
cardinals are 3n-1 with exponential complexity
21
Constrained Motion Technique
Starting from qstart in Qfree
  • follow -?U flow until local minima qloc is
    attained
  • if qloc qgoal the problem is solved otherwise
    execute a constrained motion Mi(qloc) or
    -Mi(qloc) with i ? 1,n
  • increase iteratively the i th configuration space
    coordinate by the increment ?i until a saddle
    point of the local minimum well is reached (U
    decreases again). If (q1,, qi, ,qn) is the
    current configuration its successor minimizes U
    over the set consisting of (q1,, qi ?i ,,qn)
    and its 1-neighbors in thehyperplane orthogonal
    to the qi axis (the motion thus track a valley in
    the (n-1)-dimensional subspace orthogonal to the
    qi axis).
  • terminate the constrained motion and execute an
    other gradient motion

qloc
n 2
Q-potential function used
22
Conclusion
Approach - Constructing a potential field over
the robots configuration - Building a
graph connecting the local minima of the
potential - Searching graph Aim Escaping
local minima 4 techniques - Best-first
motion gives excellent result with few DOF
robots (n lt 5) - Random motion gives good
results with many DOF - Valley-Guided motion
inferior result but can be improved in future -
Constrainted motion good at planning the
coordinated motions
Write a Comment
User Comments (0)
About PowerShow.com