SPL?Fr - PowerPoint PPT Presentation

About This Presentation
Title:

SPL?Fr

Description:

SPL. Fr jus J-E Campagne. Linear Accelerator Laboratory Orsay France. Thanks: A. Cazes, M. Mezzetto, Th. ... from Stephane Chel, HIPPI04, Frankfurt, sep04 ... – PowerPoint PPT presentation

Number of Views:83
Avg rating:3.0/5.0
Slides: 32
Provided by: Caz48
Category:
Tags: spl | stephane

less

Transcript and Presenter's Notes

Title: SPL?Fr


1
SPL?Fréjus
  • J-E Campagne
  • Linear Accelerator Laboratory Orsay France
  • Thanks A. Cazes, M. Mezzetto, Th. Schwetz
  • and the GLoBES team
  • and AM Lombardi, R. Garoby

2
A possible schema
Related talks
BetaBeam see M. Mezzetto ATM n see Th.
Schwetz
Machines R. Garoby M. Lindroos
3
SPL block diagram (CDR 1)
  • Characteristics (Conceptual Design Report 1)
  • are optimized for a neutrino factory
  • assume the use of LEP cavities klystrons up to
    the highest energy

4
Gradients at 700 MHz
from Stephane Chel, HIPPI04, Frankfurt, sep04
  • Last test performed in CryHoLab (July 04)
  • 5-cells 700 MHz ß0.65 Nb cavity A5-01
  • from CEA/Saclay and IPN-Orsay

LEP cavities may have worked 350MHz 3.6MV/m
effective gradient NuFact Note 040
5
New optimization questioned _at_ MMW04
  • Particle production
  • Horn design optimisation
  • Decay tunnel parameter optimisation
  • Flux computation at Fréjus
  • q13 and dCP sensitivity.

LAL 04-102 submitted to EPJC
Multi MegaWatt Workshop at CERN 26-28 May 04
6
Particle production
  • Proton beam
  • Pencil like
  • Ek2.2GeV, 3.5GeV
  • Target
  • 30cm long cylinder, ?15mm in Liq. Hg
  • FLUKA 2002.4
  • Normalized to a power of 4MW
  • 1.14 1023 pot/yr _at_ 2.2GeV
  • 0.71 1023 pot/yr _at_ 3.5GeV

7
SuperBeam vs nFact Optics
Thanks S. Gilardoni
8
Pion production
Rule of thumb Ep/3 En (GeV) ? 2.L(km)
9
Kaon production?
see BENE meeting 11/09/03
For 500 000 pot
  • at 2.2GeV
  • 0.26 p/s
  • 0.8 10-3 K/s
  • at 4.5GeV
  • 0.32 p/s
  • 5.2 10-3 K/s
  • at 3.5GeV
  • 0.29 p/s
  • 2.8 10-3 K/s

10
Horn design parameter
Conductor thickness 3mm horn
300kAmps reflector 600kAmps Challenging!!!
Drawing from the horn built at CERN Optimized for
Super Beam
HORN HORN
inner radius 3.4cm
neck length 40cm
outer radius 20.5cm
total length 140cm
REFLECTOR REFLECTOR
outer radius 40cm
total length 220cm
En300MeV Ep800MeV
or - focusing
Using Geant 3.2.1
NuFact-Note 138
11
Decay Tunnel Parameters
  • Length
  • modify purity
  • L10m, 20m, 40m and 60m have been tested.
  • 10m?40m
  • nm , nm 50 to 70
  • ne , ne 50 to 100
  • 40m?60m
  • nm , nm 5
  • ne , ne 20
  • 40m seems better
  • Radius
  • modify acceptance
  • R1m, 1.5m and 2m have been Tested
  • 1m ?2m (L40)
  • nm , nm 50
  • ne , ne 50 to 70
  • Larger is better (2m)

This results have been checked on sensitivity to
q13 and dCP
12
Fluxes comparison _at_ 130km
95 nmCC/kT/yr
ltEngt 245 MeV, 7.5 1013/100m2/yr
2.2GeV SPL optimum
Lipari x-sect. (see later)
13
Flux _at_ 130km focusing
http//opera.web.lal.in2p3.fr/horn/Simu/index.htm
nm
ne
p
m
3.5GeV Kinetic p beam 800MeVp focusing 40m decay
tunnel length 2m decay tunnel radius
?ne
?nm
1/2 m- 1/2 K0e3
p-
14
The X-sections
--- Lipari et al. on H20
bB is an ideal tool to measure these
cross-sections and a 2 systematic error on both
signal and background are used.
15
Analysis GLoBES M. Mezzettos parameterization
file
440kT x 5yrs 2,2 Mt.yrs ()
nm?ne (Sig) q13 1 q13 3 sin22q13 0.05 sin22q13 0.05
nm?ne (Sig) 33 (d p/2) 330 (d p/2) 2200 (d p/2) 3670 (d 0)
nm?ne (Bkg) 1500 1500 1500 1500
nm?ne (Bkg) ne ?ne CC p0 from NC nm ?nm CC (m missId) ?ne ??ne CC
Frac. of Bkg 90 6 3 1
Reduction Factor 0.707(1060) 6.5 10-4(90) 5.4 10-4(45) 0.677(15)
nm?nm (Sig) 64950 (d p/2) 64950 (d p/2) 64414 (d 0) 64414 (d 0)
nm?nm (Bkg) 3 (4.310-5 ?nm??nm CC) 3 (4.310-5 ?nm??nm CC) 3 (4.310-5 ?nm??nm CC) 3 (4.310-5 ?nm??nm CC)
sin22q120.82, q23p/4, Dm2218.1 10-5eV2,
Dm2312.2 10-3eV2
Reduction factor and efficiencies taken from SK
simulation (D. Casper) and a tight cut for e/m
misId. (cf. hep-ph/0105297)
16
440kT x 8yrs 3,5 Mt.yrs (-)
?nm??ne (Sig) q13 1 sin22q13 0.001 q13 3 sin22q13 0.01 sin22q13 0.05 sin22q13 0.05
?nm??ne (Sig) 110 (d p/2) 390 (d p/2) 1300 (d p/2) 1140 (d 0)
?nm??ne (Bkg) 490 490 490 490
?nm??ne (Bkg) ?ne ??ne CC ne ? ne CC p0 from NC ?nm ??nm CC (m missId)
Frac. of Bkg 45 35 18 2
Reduction Factor 0.677(220) 0.707(170) 2.5 10-3(90) 5.4 10-4(10)
?nm??nm (Sig) 19760 (d p/2) 19760 (d p/2) 19590 (d 0) 19590 (d 0)
?nm??nm (Bkg) 1 (4.310-5 ?nm??nm CC) 1 (4.310-5 ?nm??nm CC) 1 (4.310-5 ?nm??nm CC) 1 (4.310-5 ?nm??nm CC)
sin22q120.82, q23p/4, Dm2218.1 10-5eV2,
Dm2312.2 10-3eV2
17
Some physics performances
440kT water C, 4MW SPL, opti. Fluxes
5yrs ()
True values (Dm23, sin22q13) sin22q120.82,
q23p/4, Dm2218.1 10-5eV2 5 external precision
on q12 and Dm221 and use SPL disappearance
channel and spectrum analysis
2 syst. on signal bkg
Sin22q13(90CL) 610-3 (0.7)
sizeable improvement
5 bins 0.08,1.08 GeV
(?2(2dof)4.6 or 11.83)
18
Some physics performances
True values dCP0, q130, sin22q120.82,
q23p/4, Dm2218.1 10-5, Dm2312.2 10-3 5
external precision on q12 and Dm221 and use SPL
disappearance channel
Improve T2K-I
2 syst. on signal bkg
19
Some physics performances
True values (dCP,q) Tests dCP0 and
dCPp sin22q120.82, q23p/4, Dm2218.1 10-5,
Dm2312.2 10-3 5 external precision on q12 and
Dm221 use SPL disappearance channel 2 syst on
signal bkg
Use glbChiDelta and ?2 (1dof)9
20
Evolution of the performances
2yrs (), 8 yrs (-)
True values dCP/p -0.85, sin22q130.03,
sin2q230.4, 5 external precison on Dm2218.1
10-5, Dm2312.2 10-3, q23
cf. Th. Schwetz
21
CDR2 block diagrams
CERN proton complex
1-2GeV Eurisol, bB
2-3.5GeV SuperB, NuFact
22
Global planning (R.G courtesy)
RF tests in SM 18 of prototype structures for
Linac4
3 MeV test place ready
Linac4 approval
SPL approval
CDR 2
23
Summary
  • Higher proton energy SB Horn specific
  • new baseline 3.5GeV/2m/40m
  • q13 sensitivity
  • sensitivity to q13 0.7 (5yrs ) gain 25 wrt
    old result
  • down to q13 1.4 with the 10yrs mixed scenario
    independently of dCP
  • Improve T2K-I by a factor 10 at dCP 0 (5yrs )
  • Can discover CP violation
  • Can solve ambiguities alone and result is
    improved thanks to ATMn (Th. Schwetz s talk)
  • Complementary to BetaBeam to cross check the
    background and improve dCP sensitivity (M.
    Mezzettos talk)

Thank you
24
END
25
q13 and dCP Sensitivity computation
  • Use GLoBES v2.0.11 and M. Mezzetto SPL.glb file
  • detector
  • Water Cerenkov
  • 440 kt
  • at Fréjus (130 km from CERN)
  • Run
  • 5 years p
  • 1 year p 4 years p-
  • 2 years p 8 years p-
  • Computed with dCP0 (standard benchmark) and q13
    0
  • other parameters
  • Dm23 2.5 10-3eV2
  • Dm12 7.1 10-5eV2

Same duration
Same statistics
  • sin22q23 1.0
  • sin22q12 0.82

26
Flux _at_ 130km - focusing
1/3 m 1/3 K0e3 1/3 Ke3
p
nm
ne
3.5GeV Kinetic p beam 800MeVp focusing 40m decay
tunnel length 2m decay tunnel radius
x1/1300
x1/10
x1/200
p-
m-
?ne
?nm
27
5 years positive focusing
Energy comparison
28
positive focusing vs 10 years mixed scenario.
Focusing comparison
Energy comparison
2y 8y-
5y
50
0
0
-50
-50
2y 8y-
5y
-100
-100
-150
-150
10-3
10-3
10-4
10-4
10-4
10-3
10-3
10-4
90CL
29
General comparison.
5y mixed focusing 10y mixed focusing 5y positive
focusing
  • for 10 years in mixed focusing, sensitivity
    around q131
  • Clear complementarily between positive scenario
    and bbeam (dCPgt0)

30
Neutrino Flux 100km away
Ek3.5GeV En 300MeV L 40m,R2m
p focusing
31
MARS vs FLUKA
At the entrance of the SB decay tunnel (after the
horn focusing)
R 1m No angular cut
Discrepancies reduced in the beam line
A. Cazes thesis
Write a Comment
User Comments (0)
About PowerShow.com