HIGHLIGHTS AND CHALLENGES OF URBAN MET MODELING - PowerPoint PPT Presentation

About This Presentation
Title:

HIGHLIGHTS AND CHALLENGES OF URBAN MET MODELING

Description:

HIGHLIGHTS AND CHALLENGES OF URBAN MET MODELING – PowerPoint PPT presentation

Number of Views:23
Avg rating:3.0/5.0
Slides: 86
Provided by: metS
Learn more at: http://www.met.sjsu.edu
Category:

less

Transcript and Presenter's Notes

Title: HIGHLIGHTS AND CHALLENGES OF URBAN MET MODELING


1
HIGHLIGHTS AND CHALLENGES OF URBAN MET MODELING
  • R. BORNSTEIN (SJSU)
  • K. CRAIG (PSU)
  • A. MARTILLI (UBC)
  • S. DUPONT (FMS)
  • 2004 AMS

2
OUTLINE
  • WHY URBAN AREAS (Walt Dabberdt)
  • CURRENT STATUS
  • URBAN WEATHER/CLIMATE
  • MESOMODELS
  • MODEL URBANIZATION
  • PROBLEM AREAS
  • MESOMODELS
  • MODELURBANIZATION
  • OUTLOOK FOR FORECASTING

3
NEW URBAN CLIMATE CAUSES
  • GRASS/SOIL ? CONCRETE/BUILDINGS ?
  • NEW THERMAL INERTIA ?
  • ALTERED SFC HEAT MOSITURE FLUXES
  • FUEL CONSUMPTION ?
  • ATM POLLUTION, HEAT, AND MOISTURE
  • BUILDINGS ATM POLLUTION?
  • ALTERED SOLAR IR RADIATIVE FLUXES

4
(No Transcript)
5
URBAN WX ELEMENTS
  • TEMP PRECIP increased decreased
  • VISIBILTITY decreased
  • WIND DIRECTION con- divergence
  • TURBULENCE mechanical and thermal
  • PBL NIGHT STABILITY neutral
  • FRONTS slowed
  • THUNDERSTORMS triggered or split

6
(No Transcript)
7
(No Transcript)
8
(No Transcript)
9
(No Transcript)
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
(No Transcript)
15
(No Transcript)
16
(No Transcript)
17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
(No Transcript)
31
(No Transcript)
32
(No Transcript)
33
(No Transcript)
34
(No Transcript)
35
HUMAN-HEALTH IMPACTS OF URBAN CLIMATE
  • UHI ? THERMAL STRESS
  • PRECIP ENHANCEMENT ? FLOODS
  • TRANSPORT DIFF PATERNS FOR
  • POLLUTION EPISODES
  • EMERGENCY RESPONSE

36
(No Transcript)
37
(No Transcript)
38
(No Transcript)
39
(No Transcript)
40
URBAN ATM MODELING MULTISCALE PROBLEM
  • MODELING SCALES
  • Canyon microscale (CFD, LES, or analytic) models
  • Urban BL mesoscale (numerical) models
  • LINKAGE PROBLEMS
  • LOWER LIMIT OF HORIZ GRID IN REYNOLDS-AVERAGED
    MESOMODELS about 1 km
  • LES CFD MODELS REQUIRE CPU and time
  • LES/CFD LINKAGE WITH MESOMODELS
  • hard BCs (subject of Sat. workshop)

41
(No Transcript)
42
MESOMODEL PROBLEM AREAS
  • LARGE SCALE FORCING
  • MIN HORIZ-GRID SIZE
  • SUB-GRID TURBULENCE CLOSURE
  • SFC CHARACTERISTICS/BCs

43
URBAN MESOMODEL PROBLEMS
  • BUILDING-HEIGHT VARIATION ?
  • where is lower boundary?
  • INHOMOGENEOUS SFC TYPE ?
  • thermal, rad, and roughness param are f(x,y)
  • Roughness sub-layer u(z) vs. SBL
  • AEROSOLS ? RAD FLUX DIV ?
  • interactive met and air quality models ?
  • elev urban inversions actinic flux

44
LOWER MODELBOUNDARY SURFACE?
  • GROUND SURFACE
  • COMBO OF GROUND, WALL, AND ROOF SURFACES
  • ROUGHNESS HEIGHT
  • ROUGHNESS-SUBLAYER TOP (SAME AS SBL BASE)

45
MESO-MODEL URBANIZATION
  • SIMPLE (NON-POROUS FLOWS)
  • no T V within URBAN CANYONS
  • Look up tables for land use classes
  • Taha (1998) OHM model for heat storage term
  • Bornstein (1993) building-barrier effects
  • COMPLEX (POROUS FLOWS) from
  • Yamada (1982) forest canopy formulation
  • Brown Williams (1998) roof-drag momentum
  • Mason (2000) urban canyon-energy effects
  • Martilli (2002) effects on heat, momentum, TKE
  • Dupont (2004) Martilli forests GIS data

46
Subgrid VariabilitySimple (look-up table)
  • A. Predominant param
  • B. Average param (Kimura 1991)

WATER 20
GRASS 30
CONCRETE 50
47
Look-up table (continued)
  • INDIVIDUAL PARAM ?
  • INDIVIDUAL FLUXES ?
  • AVERAGE FLUX ? ONE TEMP
  • ADVANCED TECHNIQUES
  • GIS VALUES AS f(x,y)
  • URBAN CANYON MODULES

48
(No Transcript)
49
From Masson (2000)
50
From Masson (2000)
51
Modification of Momentum Equations
  • Drag term added to horizontal momentum equations
  • furban fraction of surface grid cell covered by
    urban land use
  • a(z) urban canopy area profile
  • Cd drag coefficient
  • Winds modeled at height within urban canopy (but
    with no buildings)

52
(No Transcript)
53
Modification for q2
  • Additional Mixing Length Scale
  • based on size of urban roughness elements that
    induce canyon circulations
  • a) Sievers (2001)
  • b) Martilli et al. (2000)

54
(No Transcript)
55
(No Transcript)
56
MESOMODEL RESULTS
  • URBMET/TVM
  • NYC
  • SEA BREEZE FRONTS
  • MM5
  • ATLANTA
  • URBAN-INITIATED THUNDERSTORMS

57
(No Transcript)
58
Rough, warm urban simulation
Rough, warm urban simulation
59
(No Transcript)
60
NYC LESSIONS
  • MUST INCLUDE ALL IMPORTANT URBAN EFFECTS
  • OBS SHOW YOU WHAT TO EXPECT AND MODEL SHOWS YOU
    STRUCTURE IN AREAS W/O OBS

61
(No Transcript)
62
(No Transcript)
63
(No Transcript)
64
(No Transcript)
65
(No Transcript)
66
MM5 23 m T on 26 July 1500 UTC
67
(No Transcript)
68
(No Transcript)
69
MM5 23 m V (barb 1m/s) for 26 July 1700 UTC
70
MM5 23 m Divergence (contour 1.0e-4 1/s) for 26
July 1500 UTC
71
E-W section of potential T (0.5 K) and div
(solid)/con (dashed) (contour interval 5 e 5
1/s) through max UHI-induced con region 26 July
1500 UTC. Thick horiz line denotes urban area.
72
MM5 section of potential T and w through
strongest UHI-induced updraft at 1700 UTC. Max w
is 4.3 m/s.
73
MM5 Cumulative Precipitation (mm) through 26 July
0100 UTC
74
MM5 23 m T on 26 July 1500 UTC NO-URBAN
75
MM5 Cumulative Precip (mm) through 26 July 0100
UTC for NO-URBAN Case.
76
EMERGENCY RESPONSE
  • CFD URBAN NEIGHBORHOOD
  • CANYON SCALE
  • LINK WITH INDOOR
  • SUBWAY

77
(No Transcript)
78
(No Transcript)
79
(No Transcript)
80
(No Transcript)
81
(No Transcript)
82
(No Transcript)
83
(No Transcript)
84
Required Future Research (Dabberdt et al. 2000)
  • Urban Field Studies, e. g,
  • URBAN 2000, JOINT URBAN, BUBBLE, UAO
  • Wind-tunnel, fluid, LES, and CFD models?
  • improved canyon parameterizations
  • Non-M-O parameterizations to replace M-O
  • More GIS inputs
  • Links b/t CFD/LES and meso-models (Mestayer and
    Bornstein 1999)

85
REAL-TIME URBAN FORECASTS REQUIRE
  • GOOD LARGE-SCALE WX-MODEL INPUT
  • GOOD URBAN-CANYON MODULES IN MESO-MODELS
  • FAST CPU
  • GOOD MESOSCALE (SFC UPPER AIR) OBS NETWORKS
    (INCLUDING COMMUNICATIONS)
Write a Comment
User Comments (0)
About PowerShow.com