Title: EE 360M Digital Systems Design Using VHDL Lecture 1
1EE 360M - Digital Systems Design Using
VHDLLecture 1
- Nur A. Touba
- University of Texas at Austin
2BASIC GATE TYPES
3FULL ADDER
4TRUTH TABLE
A
B
C
D
F
m
0 0 0 0 0 1 1 0 0 0 1
0 2 0 0 1 0 1 3 0 0 1 1
1 4 0 1 0 0 0 5 0 1 0 1
1 6 0 1 1 0 1 7 0 1 1 1
1 8 1 0 0 0 1 9 1 0 0 1
0 10 1 0 1 0 1 11 1 0 1 1
1 12 1 1 0 0 0 13 1 1 0 1
0 14 1 1 1 0 X 15 1 1 1 1 X
F S m(0,2,3,5,6,7,8,10,11) S
d(14,15)
F P M(1,4,9,12,13) S d(14,15)
5Four Variable Karnaugh Maps
F S m(0,2,3,5,6,7,8,10,11) S
d(14,15)
6Four Variable Karnaugh Maps
F P M(1,4,9,12,13) S d(14,15)
7SELECTION OF PRIME IMPLICANTS
8SIMPLIFYING 6-VARIABLE FUNCITON
- Partial truth table for 6-variable function
- G(A, B, C, D, E, F) m0 m2 m3 Em5 Em7
Fm9 m11 m15 ( dont care terms)
ABCDEF G ABCDEF G 0000XX 1 1001X1 1 0001XX X 1010X
X X 0010XX 1 1011XX 1 0011XX 1 1101XX X 01011X 1 1
111XX 1 01111X 1
9SIMPLIFICATION USING MAP-ENTERED VARIABLES
10SIMPLIFICATION USING MAP-ENTERED VARIABLES
- G A'B' ACD E(A'D) F(AD)
- In general, Function MS0 P1MS1 P2MS2
- MS0 Minimal Sum when All Variables are 0
- MS1 Minimal Sum when Variable P11, All Others
0 - MS2 Minimal Sum when Variable P21, All Others 0
11NAND/NOR GATES
12REMOVING INTERNAL INVERSION
13REMOVING INTERNAL INVERSION
- Example where Not Possible to Remove All Internal
Inversion
14CONVERSION TO NOR GATES
15CONVERSION OF AND-OR NETWORK TO NAND GATES
16STATIC HAZARDS
- Static 1-Hazard
- Output must be 1, but momentarily goes to 0 for
some change in inputs and some combination of
propagation delays - Static 0-Hazard
- If output must be 0, but momentarily goes to 1
for some change in inputs and some combination of
propagation delays
17EXAMPLE STATIC 1-HAZARD
- Static 1-Hazzard when A1, B, C1
18ELIMINATING STATIC-1 HAZARD
19AVOIDING STATIC HAZARDS
- Find sum-of-products expression (Ft) for output
- Where every pair of adjacent 1s covered by 1-term
- Two-level AND-OR network based on this Ft
- Free of 1-, 0-, and dynamic hazards
- 2. If different form of network desired,
- Manipulate Ft to desired form by simple
factoring, DeMorgans laws, etc. - Treat each xi and xi as independent variables
- To prevent introduction of hazards
20CLOCKED D FLIP-FLOP
Characteristic Equation Q D
21CLOCKED JK FLIP-FLOP
- With Falling Edge Trigger
Characteristic Equation Q JQ' K'Q
22EXCITATION TABLE FOR JK FLIP-FLOP
- Q Q J K
- 0 0 0 X (No change in Q J0, K may be 1 )
- 0 1 1 X (Change to Q 1 J 1 to set or toggle)
- 1 0 X 1 (Change to Q 0 K1 to reset or
toggle) - 1 1 X 0 (No change in Q K0, J may be 1)
-
23CLOCKED T FLIP-FLOP
Q QT' Q'T Q Ã… T
24SR LATCH
25TRANSPARENT D LATCH
26IMPLEMENTATION OF D-LATCH
- 3rd Term (DQ) and Corresponding AND Gate
- Added to Avoid Static Hazard