Title: Bifurcation Analysis of PER, TIM, dCLOCK Model
1Bifurcation Analysis of PER, TIM, dCLOCK Model
- Positive feedback interacting with negative
feedbacks - April, 2002
2Model
DBT
Pm
P1
PER-P
P2
P1
T1
Tm
P2T1
T1
ITF
T1
P2T2
PN
TF
TF
dCLK
CYC
3Equations
4Typical two parameter bifurcation diagram of
positive feedback
Region of Multiple steady states
SN
P2
SN
TB
Cusp
TB
Hopf
P1
5Typical two parameter bifurcation diagram of
negative feedback
P2
Region of Hopf
P1
6Simple Model Bifurcation Diagrams(Biophysical
Journal, 1999)
Region of Hopf
7Multiple Steady States(One parameter cut kp1)
Hopf
LP
LP
8Multiple Steady States(Two parameter cut Keq
vs. kp1)
Hopf
SN
TB
SN
Cusp
9Bifurcation Analysis of Comprehensive Model Part 1
- All of the analysis were done with k0, vmt0,
and vmtb1, unless otherwise indicated. This
eliminated feedbacks on dClk and TIM, which were
not present in our simple model. In other words,
this was done to compare the dynamics between
simple and comprehensive model, and explore the
parameter space of comprehensive model where we
could get similar dynamics as in simple model. - Unless indicated, parameters are at their default
value. (see notes in page 3)
10One parameter cut with vmc at kin 2
Hopf
LP
LP
11Two parameter bifurcation kp1 vs. vmc at kin2
TB
Fixed period 563.3
SN
Hopf 1
TB
Hopf 2
Cusp
SN
12One parameter cut with kp1 at kin2 and vmc0.03
Hopf
LP
LP
13Two parameter bifurcation kapp vs. kp1 at
vmc0.03 and kin2
Hopf
SN
TB
Cusp
14One parameter cut with kp1 at kin2 and vmc0.02
Hopf
Hopf
15Two parameter bifurcation kapp vs. kp1 at
vmc0.02 and kin2
Region of Hopf
16One parameter cut with vmc at kp10.03
Hopf
17One parameter cut with vmc at kp10.03
Hopf
Hopf
18Two parameter bifurcation kin vs. kdmp at
kp10.03
Region of Hopf
19Bifurcation Analysis of Comprehensive Model Part 2
- For the follwing figures, both negative (kin1),
and positive feedbacks are active (kp110). But
the feedbacks on TIM and dCLK are still inactive
(vmt0, vmtb1, k0).
20One parameter cut with vmc
Hopf 1
Hopf 2
LP
LP
21Two parameter bifurcation kp1 vs. vmc
TB
SN
Hopf 1
SN
TB
Cusp
Hopf 2
22One parameter cut with kp1 at vmc0.03
Hopf
LP
LP
23Two parameter bifurcation kp1 vs. vmc
Hopf
SN
TB
Cusp
24One parameter cut with vmc
Hopf 1
Hopf 2
LP
LP
25One parameter cut with vmc at kin 2
Hopf
LP
LP
26One parameter cut with vmc at kp10.03
Hopf
27Simple Model - Multiple Steady States(One
parameter cut kp1)
Hopf
LP
LP
28One parameter cut with kp1 at kin2 and vmc0.03
Hopf
LP
LP
29One parameter cut with kp1 at kin1, vmc0.03
Hopf
LP
LP
30Two parameter bifurcation kp1 vs. vmc at kin2
TB
Fixed period 563.3
SN
Hopf 1
TB
Hopf 2
Cusp
SN
31Two parameter bifurcation kp1 vs. vmc at kin1
TB
SN
Hopf 1
SN
TB
Cusp
Hopf 2
32Conclusion
- The dynamics of the comprehensive model reveals
that it is identical with our simple model, when
we have either positive feedback alone, or both
positive and negative feedbacks together at low
values of vmc. - In the presence of both positive and negative
feedbacks, they seem to interact with each other,
and generates different regions of stable limit
cycles. - Our next step is to analyze how other feedbacks
(TIM and dCLK) interact with existing feedbacks
by chaging vmt, vmtb, and k.