Title: titel
1DATA MINING from data to information Ronald
Westra Dep. Mathematics Maastricht University 7
December, 2006
2(No Transcript)
3SUPPORT VECTOR MACHINES
4(No Transcript)
5(No Transcript)
6(No Transcript)
7(No Transcript)
8(No Transcript)
9(No Transcript)
10(No Transcript)
11(No Transcript)
12(No Transcript)
13(No Transcript)
14(No Transcript)
15(No Transcript)
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30(No Transcript)
31(No Transcript)
32(No Transcript)
33(No Transcript)
34(No Transcript)
35(No Transcript)
36(No Transcript)
37(No Transcript)
38(No Transcript)
39(No Transcript)
40(No Transcript)
41(No Transcript)
42(No Transcript)
43(No Transcript)
44(No Transcript)
45(No Transcript)
46(No Transcript)
47(No Transcript)
48(No Transcript)
49(No Transcript)
50(No Transcript)
51(No Transcript)
52(No Transcript)
53(No Transcript)
54(No Transcript)
55(No Transcript)
56(No Transcript)
57(No Transcript)
58(No Transcript)
59(No Transcript)
60(No Transcript)
61(No Transcript)
62(No Transcript)
63(No Transcript)
64The VC dimension (Vapnik Chervonenkis dimension)
is a measure of the capacity of a statistical
classification algorithm. Consider a
classification model f with some parameter vector
?. The model f can shatter a set of data points
if, for all assignments of labels to those data
points, there exists a ? such that the model f
makes no errors when evaluating that set of data
points. The VC dimension of a model f is the
maximum h such that some data point set of
cardinality h can be shattered by f.
65(No Transcript)
66(No Transcript)
67(No Transcript)
68(No Transcript)
69(No Transcript)