Title: Nanoscience,
1Nanoscience,
Nanotechnology,
and the Environment
2Mike Hochella Joerg Jinschek Deborah
Aruguete Saumyaditya Bose Deric Learman Juan
Liu Kelly Plathe Alison Smith Nick Wigginton
3NANOTECHNOLOGY
- Most current nanomaterials could be organized
into four types - CARBON-BASED MATERIALS
- METAL-BASED MATERIALS
- DENDRIMERS
- COMPOSITES
4CdS/CdSe
Quantum dots
Alivisatos (1996) Science
5 nm
5Catalysis gold nanoclusters on TiO2
From Valden et al. (1998) Science Bell (2003)
Science
6(No Transcript)
7? 108 m
? 108 m
nanominerals mineral nanoparticles
8Nanoparticles in the environment
Biosystems
Atmosphere
Soils and plants
Water
9Amphibole
Smectite
Nanotubes
Amphibole
Banfield and Barker (1994) GCA
Nanoforces
Nanofilms
Tingle, Hochella, et al (1990) GCA
PNNL
10Solution chemistry and microbiology
TEM/EELS/SEM
XPS/AES/SIMS
XAS/EXAFS
AFM/STM/TS
Computational chemistry
11EXPOSURE
- INHALATION
- Workplace exposure
- Ambient air
- INGESTION
- Food
- Drinking water
- Incidental
- DERMAL
- Sunscreen
- Cosmetics
- INJECTION
- Drugs
12(No Transcript)
13(No Transcript)
14(No Transcript)
15Fig. 2. Examples of how ferric iron occurs in
the environment, ranging from the molecular- to
macroscopic scales. Left Molecular ferric oxide
states, including octahedrally coordinated
monomer (hexaquairon III 49) and oligomer
(trimer cluster 50) with Fe3 (smaller dark
red), oxygen (larger light red), and hydrogen
(light pink). These molecules are hydrogen
terminated, but should only be considered
approximations of actual aqueous/environmental
states. Middle Polyhedral representations of 1
and 5 nm hematite (Fe2O3) nanoparticles. Each
polyhedron represents an Fe3 in octahedral
coordination with oxygen. The thickness of the 5
nm particle should be typically several (roughly
5-7) octahedral layers (24) and the 1 nm particle
just a few octahedral layers. Right, top to
bottom HRTEM image of hematite nanoparticles
from Namibia (Africa) (sample courtesy of
Smithsonian Institution research collection) TEM
image of unoriented aggregate of 3-5 nm hematite
crystals (stippled portion of the image) from an
acid mine drainage site in Montana (USA) (51)
photograph of macroscopic specular hematite
(courtesy of R. Lavinsky).
16R. Raiswell et al., Geochim. Cosmochim. Acta 70,
2765 (2006).
17R. Raiswell et al., Geochim. Cosmochim. Acta 70,
2765 (2006).
18(No Transcript)
19Montana, USA
20J. Moore, U. Montana
Butte, Montana
0 km
Clark Fork River
30 km
190 km
21(No Transcript)
22upstream, riverbed
Chalcopyrite (CuFeS2)
(Zn,As,Pb)
Hochella et al. (2005) GCA Hochella et al. (2005)
Am. Min.
23Clark Fork riverbed
Clark Fork floodplain
MnO2 ? nH2O vernadite-like (PbgtCugtZngtAs)
5Fe2O3 ? 9H2O ferrihydrite (CugtPbgtAs)
Hochella et al. (2005) GCA Hochella et al. (2005)
Am. Min.
24Nanoparticles
Mn-oxidation (electron transfer)
Mn2(aq)
Fe oxide
O2
Mn3OOH (s)
Synthetic hematite (a-Fe2O3)
Madden and Hochella (2005) GCA Madden et al.
(2006) GCA
25A
B
Fe oxide
D
C
26Nanoelectronics
Shewanella electron transport chain
Courtesy Brian Lower, PNNL
Nanoparticle bioreduction Bose et al. (in prep)
30 nm
Wigginton et al. (in press) GCA Wigginton et al.
(in prep)
27Total Fe(II) determination by Ferrozine Method
for Initial Rates
Nanoparticle Synthesis
Characterization
Inoculation and Incubation
0.5 N HCl extraction of total Fe(II)
Cell Culture in Chemostat
Determination of Initial Rates
TEM of bioreduced samples
Fe(II) mM/m2
Time in days
28Bose et al., In prep
2911nm Hem
Bose et al., In prep
3012nm Hem
Bose et al., In prep
3199nm Hem
200nm
500 nm
1 µm
1 µm
1 µm
Bose et al., In prep
3230nm Hem
Bose et al., In prep
3344nm Hem
Bose et al., In prep
34Bose et al., In prep
35Wigginton, Hochella, Rosso, Lower, Shi
Mechanisms of interfacial electron transfer
mediated by the decaheme cytochromes
36Nanoelectronics
Shewanella electron transport chain
Courtesy Brian Lower, PNNL
Nanoparticle bioreduction Bose et al. (in prep)
30 nm
Wigginton et al. (in press) GCA Wigginton et al.
(in prep)
37Surface characterization of cytochrome films
Wigginton et al (in press) GCA
38Single-molecule tunneling spectroscopy probes ET
through the cytochromes
Wigginton et al (in press) GCA
39(dI/dV)/(I/V) suggests something else is going on
with MtrC
40Do eox values correlate to redox potentials of
hemes?
UV photoelectron spectroscopy
STM Bias (V)
NHE (eV)
FAu 6.30.1 eV
-1
eox
1
FMtrC 4.60.1 eV
-0.5
0.5
0
0
DF
Hartshorne et al
1.7 eV
0.5
-0.5
1
-1
-1.5
Wigginton et al (in prep)