Title: Parsimony
1Parsimony
- Every possible tree evaluated in terms of total
number of steps needed to convert each sequence
to another - Practical for only a few sequences
- High percentage of similarity a prerequisite
- Neither identical or completely different
sequence positions useful - Each difference should represent a single step
and not a full circle or non-shortest route
2Parsimony
- ACCEFAHIK LKNPR
- ACCEFGHIL LLNPR
- ACDEFGHIK LINPK
- AADEFGHIL LNNPK
-
- I II III
No. of possible trees for 4 Sequences 3 (1,2)
(3,4) (1,3) (2,4) (1,4) (2,3) No. of positions
to be considered for each tree 3
1 C
3 D
D
C
2 C
4 D
Candidate tree 1_I
3Parsimony
- ACCEFAHIK LKNPR
- ACCEFGHIL LLNPR
- ACDEFGHIK LINPK
- AADEFGHIL LNNPK
-
- I II III
1 K
3 K
L
L
2 L
4 L
Candidate tree 1_II
4Parsimony
- ACCEFAHIK LKNPR
- ACCEFGHIL LLNPR
- ACDEFGHIK LINPK
- AADEFGHIL LNNPK
-
- I II III
Total number of substitutions for tree 1 4
1 R
3 K
K
R
2 R
4 K
Candidate tree 1_III
5Parsimony
- ACCEFAHIK LKNPR
- ACCEFGHIL LLNPR
- ACDEFGHIK LINPK
- AADEFGHIL LNNPK
-
- I II III
1 C
2 C
D
D
3 D
4 D
Candidate tree 2_I
6Parsimony
- ACCEFAHIK LKNPR
- ACCEFGHIL LLNPR
- ACDEFGHIK LINPK
- AADEFGHIL LNNPK
-
- I II III
1 K
2 L
L
K
3 K
4 L
Candidate tree 2_II
7Parsimony
- ACCEFAHIK LKNPR
- ACCEFGHIL LLNPR
- ACDEFGHIK LINPK
- AADEFGHIL LNNPK
-
- I II III
Total number of substitutions for tree 2 5
1 R
2 R
K
K
3 K
4 K
Candidate tree 2_III
8Parsimony
- ACCEFAHIK LKNPR
- ACCEFGHIL LLNPR
- ACDEFGHIK LINPK
- AADEFGHIL LNNPK
-
- I II III
1 C
2 C
D
D
4 D
3 D
Candidate tree 3_I
9Parsimony
- ACCEFAHIK LKNPR
- ACCEFGHIL LLNPR
- ACDEFGHIK LINPK
- AADEFGHIL LNNPK
-
- I II III
1 K
2 L
K
K
4 L
3 K
Candidate tree 3_II
10Parsimony
- ACCEFAHIK LKNPR
- ACCEFGHIL LLNPR
- ACDEFGHIK LINPK
- AADEFGHIL LNNPK
-
- I II III
Total number of substitutions for tree 3 6
1 R
2 R
K
K
4 K
3 K
Candidate tree 3_III
11Parsimony
- ACCEFAHIK LKNPR
- ACCEFGHIL LLNPR
- ACDEFGHIK LINPK
- AADEFGHIL LNNPK
-
- I II III
Out of possible trees (1,2) (3,4) (4
substitutions) (1,3) (2,4) (5 substitutions)
and (1,4) (2,3) (6 substitutions) Tree (1,2)
(3,4) has the lowest number of substitutions.
This is the most parsimonious and therefore
most probable tree for this set of 4 sequences
1
3
2
4
Optimal tree