Title: 70S Ribosome from thermus thermophilus
170S Ribosome from thermus thermophilus
2.5 MegaDaltons
Selmer et al., Science, 313, 1935-1942 (2006)
2Why use NMR?
Dynamics
Example BPTI 30-51 folding intermediate
Interactions
Example F1 alpha - OSCP complex
Things that dont crystallize
Example RDS3
David Neuhaus MRC Laboratory of Molecular
Biology Cambridge, U.K.
3Why use NMR?
Dynamics
Example BPTI 30-51 folding intermediate
Interactions
van Mierlo, Darby, Keeler, Neuhaus Creighton J.
Mol. Biol. (1993), 229, 1125-1146.
Example F1 alpha - OSCP complex
Things that dont crystallize
Example RDS3
David Neuhaus MRC Laboratory of Molecular
Biology Cambridge, U.K.
4Bovine Pancreatic Trypsin Inhibitor
time
oxidation level
5Bovine Pancreatic Trypsin Inhibitor disuphide
folding pathway
(30-51)
R
others
(5-55)
6Bovine Pancreatic Trypsin Inhibitor disuphide
folding pathway
(30-51)
R
others
(5-55)
7Bovine Pancreatic Trypsin Inhibitor disuphide
folding pathway
Oxidative coupling of cysteines by reaction with
glutathione
Non-native 2-disulphide species are necessarily
involved in rearrangements between native
2-disulphide species
8Bovine Pancreatic Trypsin Inhibitor disuphide
folding pathway
9BPTI (30-51) intermediate 15N relaxation analysis
30-51
10Why use NMR?
Dynamics
Example BPTI 30-51 folding intermediate
Interactions
Example F1 alpha - OSCP complex
Things that dont crystallize
Carbajo, Kellas, Yang, Runswick, Montgomery,
Walker Neuhaus J. Mol. Biol. (2007), 368,
310-318.
Example RDS3
David Neuhaus MRC Laboratory of Molecular
Biology Cambridge, U.K.
11OSCP N-terminal domain
Hydrophobic groove thought to interact with
N-terminal tail(s) of F1 a subunits
1215N HSQC shift mapping addition of F1? 1-25 to
labelled OSCP-NT
?? HN gt average s.d.
?? HN gt average
HN signal disappears
1313C HSQC shift mapping addition of F1? 1-25 to
labelled OSCP-NT
?? HC gt average s.d.
?? HC gt average
Predicted groove
14OSCP-NT F1?(1-25) NOESY spectra
15OSCP-NT F1?(1-25) NOESY spectra
OSCP-NT F1? (1-25) Filtered 2D NOESY spectrum
OSCP-NT F1? (1-25) Filtered 3D NOESY spectrum
Something on F1? at 0.9ppm
16OSCP N-terminal domain
F1? 1-25
17OSCP N-terminal domain - unlabelled
F1? 1-25 Leu 17 13C615N
Cross-peak remains
18OSCP N-terminal domain - 13C 15N labelled
Cross-peak must be due to NOE linking OSCP Ala
25 ? to Leu17 ? and Ile16 ?
F1? 1-25 Leu 17 13C615N
19OSCP-NT F1?(1-25) complex structure
20Why use NMR?
Dynamics
Example BPTI 30-51 folding intermediate
van Roon, Loening, Obayashi, Yang, Newman,
Hernandez, Nagai Neuhaus Proc. Nat. Acad. Sci.
U.S.A. (2008), 105, 9621-9626.
Interactions
Example F1 alpha - OSCP complex
Things that dont crystallize
Example RDS3
David Neuhaus MRC Laboratory of Molecular
Biology Cambridge, U.K.
21pre-mRNA Splicing
22U2 snRNP
interaction partners as yet unknown
wont crystallise
23RDS3 - ordered regions and zinc clusters
24NMR ensemble calculated with ARIA
25Its a knot
26Three sorts of calculation give the same knotted
structure
Two sorts of calculation give the same knotted
structure
ARIA
ATNOSCANDID
Manual assignment
27(No Transcript)
28Building up the Triquetra motif
23
26
61
58
30
73
33
49
76
11
86
46
29The central ?-triangle
30Holding it together
31Other points of interest
- Its active
- RDS3 expressed in E. coli, exactly as prepared
for NMR, is active in a yeast splicing assay.
- Its very stable
- Thermal unfolding of RDS3 is incomplete even at
90C, and is reversible. - Treatment with EDTA causes irreversible and
complete unfolding.
- Fusions dont affect folding
- RDS3 is initially expressed as an N-terminal
fusion protein. - The fusion protein binds three zinc ions, showing
it is folded despite the fusion. - Others have shown that a C-terminal fusion is
active in splicing.
32 Acknowledgements
BPTI 30-51 folding intermediate
Carlo van Mierlo, Nigel Darby, James Keeler, Tom
Creighton
F1 alpha - OSCP complex
Rodrigo Carbajo, Fiona Kellas, Ji-Chun Yang, Mike
Runswick, Martin Montgomery, John Walker
RDS3
Marike van Roon, Niko Loening, Ji-Chun Yang, Andy
Newman, Helena Henandez, Carol Robinson, Kiyoshi
Nagai
David Neuhaus MRC Laboratory of Molecular
Biology Cambridge, U.K.
33(No Transcript)
34ATP synthase
Mitochondrial Matrix
ADP Pi
Peripheral stalk
F1
Central Stalk
H
H
H
e-
pH and voltage gradient
I
III
IV
Fo
Inner mitochondrial membrane
H
Intermembrane Space
35Building up the Triquetra motif
23
26
61
58
30
73
33
49
76
11
86
46
36ATPase peripheral stalk
- Acts as a stator to counter the rotation of F1
Oligomycin Sensitivity Conferral Protein
- Crystallisation has been difficult (perhaps due
to 3-fold positional disorder)
37OSCP N-terminal domain - 13C 15N labelled
F1? 1-25 Ile 11 2H10
Cross-peak remains
38OSCP N-terminal domain - 13C 15N labelled
F1? 1-25 Leu 12 2H10
Cross-peak remains
39RDS3
40(No Transcript)
41Its a knot from the back as well
42Far-UV CD measurements
0.2 mg/ml Rds3
10 mM Pi pH 7.2, 100 mM NaCl,1 mM DTT
43Defining the clusters
113Cd-1H Correlation
44NMR ensemble calculated with ARIA
45(No Transcript)
46Defining the clusters
47Electrostatic surface
48Hydrophobic residues
Conclusion this protein is part of a complex
49Why use NMR?
Dynamics
Example BPTI 30-51 folding intermediate
Interactions
Example F1 alpha - OSCP complex
Things that dont crystallize
Example RDS3
Tour de Force
Sec A
David Neuhaus MRC Laboratory of Molecular
Biology Cambridge, U.K.
50ATPase subunit composition
F1 (catalytic) domain
a3, b3, g, d, e
peripheral stalk
OSCP, F6, (part of) b, d
Fo (membrane) domain
a, (part of) b, c10
51Protein Interactions by NMR
N-terminal domain of OSCP interacting with
N-terminal tails of ATPase enzyme
Rodrigo J. Carbajo Fiona A. Kellas Mike Runswick
John Walker David Neuhaus
52ATPase crystal structures
Abrahams, J.P., Leslie, A.G.W., Lutter, R.
Walker, J.E. Nature 370, 621-628 (1994)
Stock, D., Leslie, A.G.W. Walker, J.E. Science
286, 1700-1705 (1999)
Gibbons, C., Montgomery, M.G., Leslie, A.G.W.
Walker, J.E. Nat. Struct. Biol. 7, 1055-1061
(2000)
53ATP synthase enzyme
54OSCP N-terminal domain - 13C 15N labelled
F1? 1-25 Leu 17 13C615N
Cross-peak remains
55Other components of the Knotome
56(No Transcript)