Title: MATHEMATICAL AND COMPUTATIONAL PROBLEMS IN SEMICONDUCTOR DEVICE TRANSPORT
1MATHEMATICAL AND COMPUTATIONAL PROBLEMS IN
SEMICONDUCTOR DEVICE TRANSPORT
- A.M.ANILE
- DIPARTIMENTO DI MATEMATICA E INFORMATICA
- UNIVERSITA DI CATANIA
- PLAN OF THE TALK
- MOTIVATIONS FOR DEVICE SIMULATIONS
- PHYSICS BASED CLOSURES
- NUMERICAL DISCRETIZATION AND SOLUTION STRATEGIES
- RESULTS AND COMPARISON WITH MONTE CARLO
SIMULATIONS - NEW MATERIALS
- FROM MICROELECTRONICS TO NANOELECTRONICS
2(No Transcript)
3(No Transcript)
4(No Transcript)
5(No Transcript)
6(No Transcript)
7(No Transcript)
8MODELS INCORPORTATED IN COMMERCIAL SIMULATORS
- ISE or SILVACO or SYNAPSIS
- DRIFT-DIFFUSION
- ENERGY TRANSPORT
- SIMPLIFIED HYDRODYNAMICAL
- THERMAL
- PARAMETERS PHENOMENOLOGICALLY ADJUSTED--- TUNING
NECESSARY- - a) PHYSICS BASED MODELS REQUIRE LESS TUNING
- b) EFFICIENT AND ROBUST OPTIMIZATION ALGORITHMS
9THE ENERGY TRANSPORT MODELS WITH PHYSICS BASED
TRANSPORT COEFFICIENTS
- IN THE ENERGY TRANSPORT MODEL IMPLEMENTED IN
INDUSTRIAL SIMULATORS THE TRANSPORT COEFFICIENTS
ARE OBTAINED PHENOMENOLOGICALLY FROM A SET OF
MEASUREMENTS - MODELS ARE VALID ONLY NEAR THE MEASUREMENTS
POINTS. LITTLE PREDICTIVE VALUE. - EFFECT OF THE MATERIAL PROPERTIES NOT EASILY
ACCOUNTABLE (WHAT HAPPENS IF A DIFFERENT
SEMICONDUCTOR IS USED ?) EX. COMPOUDS, SiC, ETC. - NECESSITY OF MORE GENERALLY VALID MODELS WHERE
THE TRANSPORT COEFFICIENTS ARE OBTAINED, GIVEN
THE MATERIAL MODEL, FROM BASIC PHYSICAL PRINCIPLES
10ENERGY BAND STRUCTURE IN CRYSTALS
- Crystals can be described in terms of Bravais
lattices - L?ia(1)ja(2)la(3) ?i,j,l ???
- with a(1), a(2) , a(3) lattice primitive vectors
11EXAMPLE OF BRAVAIS LATTICE IN 2D
12Primitive cell
13Diamond lattice of Silicon and Germanium
14RECIPROCAL LATTICE
- The reciprocal lattice is defined by
- L ?ia(1)ja(2)la(3) ?i,j,l ???
- with a(1) , a(2) , a(3) reciprocal vectors
- a(i).a(j) 2??ij
15Direct lattice
16Reciprocal lattice
17BRILLOUIN ZONE
18FIRST BRILLOUIN ZONE FOR SILICON
19BAND STRUCTURE
20EXISTENCE OF SOLUTIONS
21ENERGY BAND AND MEAN VELOCITY
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27PARABOLIC BAND APPROXIMATION
28NON PARABOLIC KANE APPROXIMATION
29(No Transcript)
30DERIVATION OF THE BTE
31(No Transcript)
32 33THE COLLISION OPERATOR
34(No Transcript)
35(No Transcript)
36FUNDAMENTAL DESCRIPTION
- The semiclassical Boltzmann transport for the
electron distribution function f(x,k,t) - ?tf v(k).?xf-qE/h ?kfCf
- the electron velocity
- v(k)?k?(k)
- ?(k)k2/2m (parabolic
band) - ?(k)1??(k) k2/2m (Kane dispersion relation)
- The physical content is hidden in the collision
operator Cf
37 PHYSICS BASED ENERGY TRANSPORT MODELS
- STANDARD SIMULATORS COMPRISE ENERGY TRANSPORT
MODELS WITH PHENOMENOLOGICAL CLOSURES STRATTON.
- OTHER MODELS (LYUMKIS, CHEN, DEGOND) DO NOT START
FROM THE FULL PHYSICAL COLLISION OPERATOR BUT
FROM APPROXIMATIONS. - MAXIMUM ENTROPY PRINCIPLE (MEP) CLOSURES (ANILE
AND MUSCATO, 1995 ANILE AND ROMANO, 1998 1999
ROMANO, 2001ANILE, MASCALI AND ROMANO ,2002,
ETC.) PROVIDE PHYSICS BASED COEFFICIENTS FOR THE
ENERGY TRANSPORT MODEL, CHECKED ON MONTE CARLO
SIMULATIONS. - IMPLEMENTATION IN THE INRIA FRAMEWORK CODE
(ANILE, MARROCCO, ROMANO AND SELLIER), SUB.
J.COMP.ELECTRONICS., 2004
38DERIVATION OF THE ENERGY TRANSPORT MODEL FROM THE
MOMENT EQUATIONS WITH MAXIMUM ENTROPY CLOSURES
- MOMENT EQUATIONS INCORPORATE BALANCE EQUATIONS
FOR MOMENTUM, ENERGY AND ENERGY FLUX - THE PARAMETERS APPEARING IN THE MOMENT EQUATIONS
ARE OBTAINED FROM THE PHYSICAL MODEL, BY ASSUMING
THAT THE DISTRIBUTION FUNCTION IS THE MAXIMUM
ENTROPY ONE CONSTRAINED BY THE CHOSEN MOMENTS.
39(No Transcript)
40SILICON MATERIAL MODEL
41MOMENT EQUATIONS
42(No Transcript)
43(No Transcript)
44(No Transcript)
45(No Transcript)
46(No Transcript)
47THE MOMENT METHOD APPROACHTHE LEVERMORE METHOD
OF EXPONENTIAL CLOSURES
48(No Transcript)
49LEVERMORES CLOSURE ANSATZ
50(No Transcript)
51HYPERBOLICITY
52(No Transcript)
53THEOREM
54THEOREM
55APPLICATION OF THE METHOD
56(No Transcript)
57(No Transcript)
58(No Transcript)
59(No Transcript)
60(No Transcript)
61(No Transcript)
62(No Transcript)
63(No Transcript)
64TEST FOR THE EXTENDED MODEL WITH 1D
STRUCTURESMUSCATO ROMANO, 2001
65(No Transcript)
66(No Transcript)
67(No Transcript)
68(No Transcript)
69(No Transcript)
70(No Transcript)
71(No Transcript)
72(No Transcript)
73(No Transcript)
74(No Transcript)
75(No Transcript)
76IDENTIFICATION OF THE THERMODYNAMIC VARIABLES
- ZEROTH ORDER M.E.P. DISTRIBUTION FUNCTION
- fME exp(-?/kB - ?W?)
- ENTROPY FUNCTIONAL
- s-kB?Bf logf (1-f) log(1-f)dk
- WHENCE
- ds ?dn kB ?Wdu
- COMPARING WITH THE FIRST LAW OF THERMODYNAMICS
- 1/Tn kB ?W ??n - ?Tn
77FORMULATION OF THE EQUATIONS WITH THERMODYNAMIC
VARIABLES
- THEOREM THE CONSTITUTIVE EQUATIONS OBTAINED
FROM THE M.E.P. CAN BE PUT IN THE FORM - Jn (L11/Tn)??nL12?(1/Tn)
- TnJ sn (L21/Tn)??nL22?(1/Tn)
- WITH
- L11 -nD11/kB
- L12 -3/2 nkBTn2D12nD12Tn(log n/Nc -3/2)
- L22 -3/2 nkBTn2D22n?nD11Tn(log n/Nc
-3/2)-L12kBTn(log n/Nc -3/2)?n - WHERE
- ?n -?n q?
- ARE THE QUASI-FERMI POTENTIALS, ?n THE
ELECTROCHEMICAL POTENTIALS
78. FINAL FORM OF THE EQUATIONS
79PROPERTIES OF THE MATRIX A
- A11q2L11
- A12-q2L11?-qn(3/2)D11TnkBTn2D12
- A21q2L11?nqL12
- A22 q2L11?n22qL21 ?nL22
- THE EINSTEIN RELATION D11-KBTn/Q D13 HOLDS
- BUT THE ONSAGER RELATIONS (SYMMETRY OF A) HOLD
ONLY FOR THE PARABOLIC BAND EQUATION OF STATE.
80 COMPARISON WITH STANDARD MODELS
- A11n??nqTn
- A12n??nqTn (?kBTn /q ? -?n?)
- A12 A21
- A22n??nqTn (?kBTn /q ? -?n?)2(?-c)(kBTn /q)2
- THE CONSTANTS ?, ?, c, CHARACTERIZE THE MODELS OF
STRATTON, LYUMKIS, DEGOND, ETC. - ?n IS THE MOBILITY AS FUNCTION OF TEMPERATURE.
IN THE APPLICATIONS THE CONSTANTS ARE TAKEN AS
PHENOMENOLOGICAL PARAMETERS FITTED TO THE DATA
81NUMERICAL STRATEGY
- Mixed finite element approximation (the classical
Raviart-Thomas - RT0 is used for space discretization ).
- Operator-splitting techniques for solving saddle
point problems arising from mixed finite elements
formulation . - Implicit scheme (backward Euler) for time
discretization of the artificial transient
problems generated by operator splitting
techniques. - A block-relaxation technique, at each time step,
is implemented in order to reduce as much as
possible the size of the successive problems we
have to solve, by keeping at the same time a
large amount of the implicit character of the
scheme. - Each non-linear problem coming from relaxation
technique is solved via the Newton-Raphson method.
82(No Transcript)
83(No Transcript)
84(No Transcript)
85THE MESFET
86(No Transcript)
87(No Transcript)
88MONTE CARLO SIMULATIONINITIAL PARTICLE
DISTRIBUTION
89INITIAL POTENTIAL
90INTERMEDIATE STATE PARTICLE DISTRIBUTION
91INTERMEDIATE STATE POTENTIAL
92FINAL PARTICLE DISTRIBUTION
93FINAL STATE POTENTIAL
94(No Transcript)
95(No Transcript)
96(No Transcript)
97(No Transcript)
98(No Transcript)
99(No Transcript)
100(No Transcript)
101(No Transcript)
102COMPARISON
- THE CPU TIME IS VERY DIFFERENT (MINUTES FOR OUR
ET-MODEL DAYS FOR MC) ON SIMILAR COMPUTERS. - THE I-V CHARACTERISTIC IS WELL REPRODUCED
- NEXT
- COMPARISON OF THE FIELDS WITHIN THE DEVICE
103(No Transcript)
104(No Transcript)
105(No Transcript)
106(No Transcript)
107(No Transcript)
108(No Transcript)
109(No Transcript)
110(No Transcript)
111(No Transcript)
112(No Transcript)
113(No Transcript)
114(No Transcript)
115(No Transcript)
116(No Transcript)
117(No Transcript)
118(No Transcript)
119(No Transcript)
120(No Transcript)
121(No Transcript)
122(No Transcript)
123(No Transcript)
124(No Transcript)
125(No Transcript)
126PERSPECTIVES
- DEVELOP MODELS FOR COMPOUND MATERIALS USED IN RF
AND OPTOELECTRONICS DEVICES - INTERACTIONS BETWEEN DEVICES AND ELECTROMAGNETIC
FIELDS (CROSS-TALK, DELAY TIMES, ETC.) - DEVELOP MODELS FOR NEW MATERIALS FOR POWER
ELECTRONICS APPLICATIONS Sic - EFFICIENT OPTIMIZATION ALGORITHMS