Bilgi Erisim: Temel Kavramlar - PowerPoint PPT Presentation

About This Presentation
Title:

Bilgi Erisim: Temel Kavramlar

Description:

Bilgi Eri im: Temel Kavramlar Ya ar Tonta Hacettepe niversitesi tonta_at_hacettepe.edu.tr yunus.hacettepe.edu.tr/~tonta/ DOK324/BBY220 Bilgi Eri im lkeleri – PowerPoint PPT presentation

Number of Views:125
Avg rating:3.0/5.0
Slides: 53
Provided by: ValuedG130
Category:

less

Transcript and Presenter's Notes

Title: Bilgi Erisim: Temel Kavramlar


1
Bilgi Erisim Temel Kavramlar
Yasar Tonta Hacettepe Üniversitesi tonta_at_hacettepe
.edu.tr yunus.hacettepe.edu.tr/tonta/ DOK324/BBY2
20 Bilgi Erisim Ilkeleri
2
Plan
  • Bilgi tanimi
  • Belge tanimi
  • Bilgi erisim sistemlerinin mantiksal yapisi
  • Temel kavramlar
  • Erisim kurallari
  • Performans ölçümleri

3
Felsefede Bilgi (Knowledge)
  • Bilgi
  • Bilme etkinligi
  • Bu etkinlik sonucu elde edilen çikti
  • Bilgi etkinlikleri
  • algilama
  • anlama
  • düsünme
  • muhakeme etme
  • yorumlama
  • açiklama
  • dogrulama
  • degerlendirme

Kaynak Kuçuradi, 1995, s. 97
4
Bilgi Arastirmalarinda Bilgi (Information)
  • Süreç olarak bilgi (information-as-process)
  • Bilgi olarak bilgi (information-as-knowledge)
  • Nesne olarak bilgi (information-as-object)

5
Bilgiye Farkli Bakis Açilari
Kaynak Buckland, 1991, s. 6
6
Belge
  • docere ögretmek, bilgilendirmek
  • ment araçlar
  • bir fiziksel ya da entellektüel olguyu temsil
    etmek, yeniden yaratmak ya da ispatlamak için
    korunan ya da kaydedilen tüm somut ve sembolik
    dizinsel isaretler (Suzanne Briet)
  • Belge örnekleri kil tablet, yontu, papirüs,
    harita, yazma, kitap, dergi, resim, film, kaset,
    CD-ROM, DVD, Web sayfasi, dijital belgeler, vs.

7
Farkli Disiplinlerde Belge
  • Belge biçim isaret ortam
  • Biçim
  • Hattatlar, müzik ve sinema yapimcilari, örüntü
    tanima uzmanlari, kütüphaneciler, arsivciler,
    müzeciler
  • Isaret
  • Dilbilimciler, bilgisayarcilar, yapay zeka
    uzmanlari
  • Ortam
  • Arsivciler, tarihçiler, hukukçular, diplomatik
    bilimciler, yayincilar, kütüphaneciler, vd.

8
Bilgi Yönetimi (Information Management)
  • her türlü örgütün etkin olarak isletilmesiyle
    ilgili bilginin saglanmasi, düzenlenmesi,
    denetimi, yayimi ve kullanimina yönetim
    ilkelerinin uygulanmasi
  • dogru karar vermek için dogru formda, dogru
    kisiye, dogru maliyetle, dogru zamanda, dogru
    yerde, dogru bilgiyi saglamak

9
Bilgi Yönetimi (Knowledge Management)
  • bir örgütün misyonunu gerçeklestirmesi için
    örgütün entellektüel sermayesinin kullanimina
    dayanan bir yönetim uygulamasi
  • Entellektüel sermaye örgüt çalisanlarinin
    gelistirdigi ya da biriktirdigi deneyim, hizmet
    ve ürünlerden saglanan bilgi (knowledge).
  • Bilgi (knowledge)
  • Belirtik (nesne olarak bilgi)
  • Örtük (bilgi olarak bilgi)

10
Bilgi Yöneticisi Neyi Yönetir?
  • Insan beyninde sakli örtük bilgileri mi?
  • Üzerinde bilgi tasidigi varsayilan nesneleri
    (belgeleri) mi?
  • Yoksa her ikisini de mi?
  • Kütüphanecilik
  • Arsivcilik
  • Dokümantasyon - Belge yönetimi Kayit yönetimi -
    Idari dokümantasyon (records management, document
    management)
  • Veri yönetimi, Bilgi kaynaklari yönetimi, Bilgi
    teknolojisi yönetimi
  • Bilgibilim, bilgi arastirmalari
  • Bilgi yönetimi (üzerinde bilgi tasiyan belgelerin
    yönetimi)

11
Bilgi Yönetimi (Information Management)
  • Belgelerin saglanmasi, düzenlenmesi, yasatilmasi,
    kullanimi, korunmasi, arsivlenmesi
  • Kullanicilarin bilgi gereksinimlerinin saptanmasi
    ve karsilanmasi
  • Bilgi sistemlerinin tasarlanmasi, kurulmasi ve
    isletilmesi
  • Bilgi teknolojisi yönetimi

12
Bilgi Erisim
  • bilgi toplama, siniflama, kataloglama, depolama,
    büyük miktardaki verilerden arama yapma ve bu
    verilerden istenen bilgiyi üretme (veya gösterme)
    teknigi ve süreci

13
Bilgi Erisimin Temel Ikilemi
  • Hakkinda bilgi bulmak için bilmedigin bir seyi
    tanimlama geregi (Hjerrpe)

14
Bilgi Kesfetme, Tanimlama, Düzenleme ve Erisim
Kesfetme
Kesfetme
Tanimlama
Tanimlama
Düzenleme
Düzenleme
Erisim
Erisim
15
Belge Erisim Sisteminin Mantiksal Düzenlemesi
Belgeler
Kullanicilar
Gömü - Sözlük
Sorgu formülasyonu
Dizinleme
Dizin tutanaklari
Formel sorgu cümlesi
Erisim kurali
Kaynak Maron, 1984
16
Ideal Bilgi Erisim Sistemi
  • Ilgili belgelerin tümüne ve salt ilgili belgelere
    erisim saglamali
  • Ilgililik kavrami
  • Nesnel ilgililik
  • Öznel ilgililik
  • Birbirine benzeyen bilgileri bir araya getirmek,
    benzemeyenleri ayirmak

17
Background Concepts for IR
  • User Information Needs
  • Controlled Vocabularies (Pre and
    Post-coordination)
  • Indexing Languages
  • IR definitions and concepts
  • Documents
  • Queries
  • Collections
  • Evaluation
  • Relevance

18
User Information Need
  • Why build IR systems at all?
  • People have different and highly varied needs for
    information
  • People often do not know what they want, or may
    not be able to express it in a usable form
  • Bouldings Image
  • How to satisfy these user needs for information?

19
Controlled Vocabularies
  • Vocabulary control is the attempt to provide a
    standardized and consistent set of terms (such as
    subject headings, names, classifications, etc.)
    with the intent of aiding the searcher in finding
    information.
  • Controlled vocabularies are a kind of metadata
  • Data about data
  • Information about information

20
Pre- and Postcoordination
  • Precoordination relies on the indexer (librarian,
    etc.) to construct some adequate representation
    of the meaning of a document.
  • Postcoordination relies on the user or searcher
    to combine more atomic concepts in the attempt to
    describe the documents that would be considered
    relevant.

21
Structure of an IR System
Search Line
Adapted from Soergel, p. 19
22
Uses of Controlled Vocabularies
  • Library Subject Headings, Classification and
    Authority Files.
  • Commercial Journal Indexing Services and
    databases
  • Yahoo, and other Web classification schemes
  • Online and Manual Systems within organizations
  • SunSolve
  • MacArthur

23
Types of Indexing Languages
  • Uncontrolled Keyword Indexing
  • Indexing Languages
  • Controlled, but not structured
  • Thesauri
  • Controlled and Structured
  • Classification Systems
  • Controlled, Structured, and Coded
  • Faceted Classification Systems

24
Thesauri
  • A Thesaurus is a collection of selected
    vocabulary (preferred terms or descriptors) with
    links among Synonymous, Equivalent, Broader,
    Narrower and other Related Terms

25
Thesauri (cont.)
  • National and International Standards for Thesauri
  • ANSI/NISO z39.19--1994 -- American National
    Standard Guidelines for the Construction, Format
    and Management of Monolingual Thesauri
  • ANSI/NISO Draft Standard Z39.4-199x -- American
    National Standard Guidelines for Indexes in
    Information Retrieval
  • ISO 2788 -- Documentation -- Guidelines for the
    establishment and development of monolingual
    thesauri
  • ISO 5964-- Documentation -- Guidelines for the
    establishment and development of multilingual
    thesauri

26
Development of a Thesaurus
  • Term Selection.
  • Merging and Development of Concept Classes.
  • Definition of Broad Subject Fields and Subfields.
  • Development of Classificatory structure
  • Review, Testing, Application, Revision.

27
Categorization Summary
  • Processes of categorization underlie many of the
    issues having to do with information organization
  • Categorization is messier than our computer
    systems would like
  • Human categories have graded membership,
    consisting of family resemblances.
  • Family resemblance is expressed in part by which
    subset of features are shared
  • It is also determined by underlying
    understandings of the world that do not get
    represented in most systems

28
Classification Systems
  • A classification system is an indexing language
    often based on a broad ordering of topical areas.
    Thesauri and classification systems both use this
    broad ordering and maintain a structure of
    broader, narrower, and related topics.
    Classification schemes commonly use a coded
    notation for representing a topic and its place
    in relation to other terms.

29
Classification Systems (cont.)
  • Examples
  • The Library of Congress Classification System
  • The Dewey Decimal Classification System
  • The ACM Computing Reviews Categories
  • The American Mathematical Society Classification
    System

30
Central Concepts in IR
  • Documents
  • Queries
  • Collections
  • Evaluation
  • Relevance

31
Documents
  • What do we mean by a document?
  • Full document?
  • Document surrogates?
  • Pages?
  • Buckland What is a Document, What is a
    Digital Document
  • Are IR systems better called Document Retrieval
    systems?
  • A document is a representation of some
    aggregation of information, treated as a unit.

32
Collection
  • A collection is some physical or logical
    aggregation of documents
  • A database
  • A Library
  • An index?
  • Others?

33
Queries
  • A query is some expression of a users
    information needs
  • Can take many forms
  • Natural language description of need
  • Formal query in a query language
  • Queries may not be accurate expressions of the
    information need
  • Differences between conversation with a person
    and formal query expression

34
Evaluation
  • Why Evaluate?
  • What to Evaluate?
  • How to Evaluate?

35
Why Evaluate?
  • Determine if the system is desirable
  • Make comparative assessments
  • Others?

36
What to Evaluate?
  • How much of the information need is satisfied.
  • How much was learned about a topic.
  • Incidental learning
  • How much was learned about the collection.
  • How much was learned about other topics.
  • How inviting the system is.

37
What to Evaluate?
  • What can be measured that reflects users
    ability to use system? (Cleverdon 66)
  • Coverage of Information
  • Form of Presentation
  • Effort required/Ease of Use
  • Time and Space Efficiency
  • Recall
  • proportion of relevant material actually
    retrieved
  • Precision
  • proportion of retrieved material actually relevant

effectiveness
38
Relevance
  • In what ways can a document be relevant to a
    query?
  • Answer precise question precisely.
  • Partially answer question.
  • Suggest a source for more information.
  • Give background information.
  • Remind the user of other knowledge.
  • Others ...

39
Relevance
  • Intuitively, we understand quite well what
    relevance means. It is a primitive y know
    concept, as is information for which we hardly
    need a definition. if and when any productive
    contact in communication is desired,
    consciously or not, we involve and use this
    intuitive notion or relevance.
  • Saracevic, 1975 p. 324

40
Relevance
  • How relevant is the document
  • for this user, for this information need.
  • Subjective, but
  • Measurable to some extent
  • How often do people agree a document is relevant
    to a query?
  • How well does it answer the question?
  • Complete answer? Partial?
  • Background Information?
  • Hints for further exploration?

41
Relevance Research and Thought
  • Review to 1975 by Saracevic
  • Reconsideration of user-centered relevance by
    Schamber, Eisenberg and Nilan, 1990
  • Special Issue of JASIS on relevance (April 1994,
    45(3))

42
Saracevic
  • Relevance is considered as a measure of
    effectiveness of the contact between a source and
    a destination in a communications process
  • Systems view
  • Destinations view
  • Subject Literature view
  • Subject Knowledge view
  • Pertinence
  • Pragmatic view

43
Define your own relevance
  • Relevance is the (A) gage of relevance of an (B)
    aspect of relevance existing between an (C)
    object judged and a (D) frame of reference as
    judged by an (E) assessor
  • Where

From Saracevic, 1975 and Schamber 1990
44
A. Gages
  • Measure
  • Degree
  • Extent
  • Judgement
  • Estimate
  • Appraisal
  • Relation

45
B. Aspect
  • Utility
  • Matching
  • Informativeness
  • Satisfaction
  • Appropriateness
  • Usefulness
  • Correspondence

46
C. Object judged
  • Document
  • Document representation
  • Reference
  • Textual form
  • Information provided
  • Fact
  • Article

47
D. Frame of reference
  • Question
  • Question representation
  • Research stage
  • Information need
  • Information used
  • Point of view
  • request

48
E. Assessor
  • Requester
  • Intermediary
  • Expert
  • User
  • Person
  • Judge
  • Information specialist

49
Schamber, Eisenberg and Nilan
  • Relevance is the measure of retrieval
    performance in all information systems, including
    full-text, multimedia, question-answering,
    database management and knowledge-based systems.
  • Systems-oriented relevance Topicality
  • User-Oriented relevance
  • Relevance as a multi-dimensional concept

50
Schamber, et al. Conclusions
  • Relevance is a multidimensional concept whose
    meaning is largely dependent on users
    perceptions of information and their own
    information need situations
  • Relevance is a dynamic concept that depends on
    users judgements of the quality of the
    relationship between information and information
    need at a certain point in time.
  • Relevance is a complex but systematic and
    measureable concept if approached conceptually
    and operationally from the users perspective.

51
Froehlich
  • Centrality and inadequacy of Topicality as the
    basis for relevance
  • Suggestions for a synthesis of views

52
Janes View of Relevance
Write a Comment
User Comments (0)
About PowerShow.com