M. Gams - PowerPoint PPT Presentation

About This Presentation
Title:

M. Gams

Description:

COGNITIVE SCIENCE 2 KOGNITIVNA ZNANOST 2 M. Gams Institut Jo ef Stefan – PowerPoint PPT presentation

Number of Views:104
Avg rating:3.0/5.0
Slides: 29
Provided by: Gam107
Category:

less

Transcript and Presenter's Notes

Title: M. Gams


1

COGNITIVE SCIENCE 2 KOGNITIVNA ZNANOST 2
  • M. Gams
  • Institut Jožef Stefan

2
FIRST ANALYSIS
  • Easy Hard question
  • - Easy how to make AI?
  • - Hard to explain consciousness, why and how it
    appeared ...
  • Achievements in the computer age?
  • robots (work, walk )engineering
    intelligence (chess, applications)runterstanding
    (Turing test)

Fast technol. progress, slow cognitive
3
Artificial intelligence how to make computers
intelligent, Cognitive science - human-like
computers
 
4
Moores law
5
Brain capacity
  • 500 generations Europe
  • 5000 generations pra-Eva
  • Die-out

6
Speed of progress
7
Where is the smart computer?
Unknown barrier
8
PARADOXES
  • Empirical lack of true human-level AI
  • Slomans paradox Einsteins book
  • Searls paradox Chinese room
  • Chalmers zombie consciousnessThe notion of a
    philosophical zombie is used mainly in thought
    experiments intended to support arguments (often
    called "zombie arguments") against forms of
    physicalism such as materialism, behaviorism and
    functionalism. Physicalism is the idea that all
    aspects of human nature can be explained by
    physical means specifically, all aspects of
    human nature and perception can be explained from
    a neurobiological standpoint.

9
(No Transcript)
10
Roger Penrose
  • Oxford, crne luknje, Hawkings
  • Controversial books on the connection between
    fundamental physics and human consciousness. In
    The Emperor's New Mind (1989), he argues that
    known laws of physics are inadequate to explain
    the phenomenon of human consciousness. Penrose
    hints at the characteristics this new physics may
    have and specifies the requirements for a bridge
    between classical and quantum mechanics (what he
    terms correct quantum gravity, CQG). He claims
    that the present computer is unable to have
    intelligence because it is a deterministic system
    that for the most part simply executes
    algorithms, as a billiard table where billiard
    balls act as message carriers and their
    interactions act as logical decisions. He argues
    against the viewpoint that the rational processes
    of the human mind are completely algorithmic and
    can thus be duplicated by a sufficiently complex
    computer -- this is in contrast to views, e.g.,
    biological naturalism, that human behavior but
    not consciousness might be simulated. This is
    based on claims that human consciousness
    transcends formal logic systems because things
    such as the insolubility of the halting problem
    and Gödel's incompleteness theorem restrict an
    algorithmically based logic from traits such as
    mathematical insight.

 
11
Roger Penrose
In 1994, Penrose followed up The Emperor's New
Mind with Shadows of the Mind and in 1997 with
The Large, the Small and the Human Mind, further
updating and expanding his theories. Penrose's
views on the human thought process are not widely
accepted in scientific circles. According to
Marvin Minsky, because people can construe false
ideas to be factual, the process of thinking is
not limited to formal logic. Furthermore, he says
that artificial intelligence (AI) programs can
also conclude that false statements are true, so
error is not unique to humans. Penrose and Stuart
Hameroff have speculated that human consciousness
is the result of quantum gravity effects in
microtubules.
 
12
Quantum physics
  • interpretation of the Schrëdinger equation
  • - classical or Copenhagen or the GRW
    interpretation
  • - Bohm's interpretation
  • - multiple-worlds interpretation.

 
13
Quantum computing
  • Deutch
  • Theory well defined, practical prototypes
  • In principle not more powerful than Turing
    machines
  • Can perform differently

14
Supercomputing
Turing machine with oracle TuringSpecific
quantum computing KomarTrial-and-error
PutnamExtended Turing machines with real
numbers AbramsonMcCulloch-Pitts neurons
growing - Karp and Lipton Analog non
simulatable - Rubel, KononenkoMultiple
computing - Gams Interaction machines
WegnerCoupled TM open input - Copeland,
SylvanPartially random machines truly
random Copeland, Turing
15
ZEUS MACHINE
Zeus machine - Boolos and Jeffrey 1974 infinite
computing, each step is computed faster and
faster Example computing/going from A to B,
first half in 1sec, next quarter in ¼ end in 2
sec thus computing infinite numbers The Supermind
book, subtitled People harness hypercomputation
and more, authored by Selmer Bringsjord and
Michael Zenzen, aggressively attacks the
strong-AI viewpoint that human thinking processes
are computationally as strong as computers
Bringsjord, S. and Zenzen, M. J. (2003),
Superminds, Kluwer.
16
  • Predstavitev osnovne teze principa
    mnogoterosti (1985-2001)
  •  M. Gams Weak intelligence Through the
    principle and paradox of multiple knowledge,
    Advances in computation Theory and practice,
    Volume 6, Nova science publishers, inc., NY, ISBN
    1-56072-898-1, pp. 245, 2001.
  • NajboljÅ¡e rezultate je možno dosegati le ob
    uporabi mnogoterih modelov (kiberneticno).
  • Miselni procesi so mnogoteri. Povecana
    racunska/miselna sposobnost prihaja iz mnogoterih
    procesov, ki interaktirajo med seboj (teoreticno,
    inteligentno). V principu je ta racunski
    mehanizem mocnejši kot univerzalni digitalni
    racunalnik oz. Turingov stroj.

17
  • Potrditve osnovne teze
  1. Formalni/matematicni (od 2 do 10 samostojnih
    modelov) ob predpostavkah realnega sveta
    pricakovani boljši rezultati smiselno
    kombiniranje-integriranje ob razumnih
    predpostavkah (bolje kot 50)
  2. Simulacije modelov z razlicnimi metodami in
    parametri kažejo podobno
  3. Teoreticne analize (Turingovi stroji)
  4. Študij ljudi (mnogoterosti možganov sedaj in v
    preteklosti skupine ljudi)
  5. Empiricne meritve sistemov
  6. Podobnost s fiziko (Heisenberg, teorija vecih
    svetov)

18
  • Average-case analyses

19
  • Predstavitev osnovne teze principa
    mnogoterosti (1985-2001)Turingov stroj

20
  • Predstavitev osnovne teze principa
    mnogoterosti (1985-2001) Wegner 1997
    interakcija mocnejša

21
Ljudje
  • Delamo najbolje v skupinah (vec glav vec ve
    slabo prevec kuharjev, slaba juha)
  • Clovek racunalnik bolje kot samo clovek ali
    samo racunalnik
  • Å tudij možganov dve hemisferi razvoj cloveÅ¡kih
    možganov cedalje bolj mnogoteri, študij opic
  • Å tudij možganov corpus calosum, split-brain
    research, moški-ženski, dve hemisferi izrazito
    mnogoteri
  • Potrjujejo tezo o principu mnogoterosti pri ljudeh

22
Empiricne potrditve - kibernetika, umetna
inteligenca, strojno ucenje
  • - boljÅ¡a klasifikacijska tocnost - empiricno na
    tisoce meritev-potrditev- možno je preveriti
    model na konkretni aplikaciji s prilagoditvijo
    parametrov modela- vec podobnih ugotovitev na
    specificnih podrocjih (statistika, prepoznavanje
    vzorcev )- omogocena ocena algoritmov vnaprej-
    omogocena analiza delovanja algoritmov
    (intuitivno in formalisticno)- omogoceno
    snovanje boljših algoritmov

23
Multiple-worlds /quantum computing
  • Travel in space (back, forward, but one life)
  • How many universes, where?- physical (more
    dimensions)- mental- potential in future
  • Quantum computing drugacno racunanje,
    primitivni prototipi /40

 
24
  1. Analogija s fiziko paradoksi, dograditev
    znanstvenih teorij
  2. Kvantna fizika, teorija vecih svetov, najbolj
    Å¡iroka izmed interpretacij (premocna, kje je
    neskoncno svetov v glavi, mentalno, ali
    fizicno, potovanja v casu??), resna znanstvena
    teorija, dr. Pavšic
  3. Ali niso te teorije prevec sofisticirane? Tako
    fizikalne, kvantne kot mentalne? Recimo kje v
    glavi je neskoncno svetov, kje je veliko
    osebnosti (miselnih procesov), zakaj internet ni
    inteligenten?, zakaj agenti niso inteligentni?,
    ali znamo narediti mnogotere inteligentne
    racunalnike?
  4. Precej odprtih vprašanj, nejasnosti, vendar
    znanstvene teorije držijo - primerjajmo z drugimi
    principi.
  • Heisenbergov princip, teorija vecih svetov

25
  • Posledice osnovne teze
  • Podobno kot Heisenbergov princip locimo med
    sedanjimi in pravimi inteligentnimi sistemi.
  • Å ibka inteligenca Zakaj racunalniki ne bodo
    nikoli mislili (razen ce ne bodo drugace
    narejeni)?(namesto enega racunalnika skoraj
    zadošca internet)
  • Za doseganje dobrih rezultatov nujne mnogotere
    metode
  • Paradoks mnogoterega znanja vec modelov
    en model? staticno - dinamicno

26
  • Weak intelligence through the principle and
    paradox of multiple knowledge

PREFACE 1 ARTIFICIAL INTELLIGENCE 1.1 Artificial
Intelligence Directions 1.2 History of Artificial
Intelligence 1.3 Where's the AI? 1.4
Storage/Memory vs. Processing/Thinking 1.5
Problems with Formalistic AI 1.6 Strong-AI
Super-Projects 2 TRENDS OF COMPUTER PROGRESS 3
THE BRAIN 4 STRONG VERSUS WEAK AI 4.1
Description 4.2 Sloman's Engineering Gradation of
Strong-Weak AI 5 FUNDAMENTALS OF AI, COMPUTER
SCIENCE AND SCIENCE IN GENERAL 5.1 Alan Turing
5.2 The Turing Test 5.3 Turing Machine and
Church-Turing Thesis 5.4 Church-Turing
Thesis and Turing Machines 5.5 Goedel's Theorem
and the Halting Problem 5.6 Penrose's Analyses of
Goedel's Theorem 5.7 Is Interaction Stronger than
Algorithms? 6 THE PRINCIPLE AND PARADOX OF
MULTIPLE KNOWLEDGE 6.1 Basic Definitions 6.2 The
Principle of Multiple Knowledge 6.3 The Paradox
of Multiple Knowledge 7 CONFIRMATIONS OF THE
PRINCIPLE 7.1 Multiple Knowledge in Empirical
Learning 7.2 Simulated Multiple Models 7.3 Formal
Worst-Case Analyses 7.4 Formal Average-Case
Improvements 7.5 Fitting the Model to Real-Life
Applications 7.6 Human Multiple Reasoning 7.7
Cognitive Sciences and Common Sense
27
  • Weak intelligence through the principle and
    paradox of multiple knowledge

8 CONSEQUENCES 8.1 Occam's Razor Vs. Multiple
Knowledge 8.2 Bayes' Classifier And Multiple
Knowledge 8.3 Properties of Knowledge 9
MANY-WORLDS THEORY AND QUANTUM COMPUTING 9.1
Paradoxes of Modern Physics 9.2 Interpretations
of Quantum Physics 9.3 The Many-Worlds Theory 9.4
Objections to the Many-Worlds Interpretation 9.4
Quantum Computing 9.5 From Many Worlds to the
Principle of Multiple Knowledge 10 STRONG AI
FIGHTS BACK 11 CONCLUSION
28
  • Posledice
  1. Povecano razumevanje podrocja inteligence in
    zavesti, intenziviranje raziskav v smeri umetne
    inteligence, bistveno povecane možnosti novih
    odkritij
  2. Popravki obstojecih osnovnih teorij Occamovega
    rezila, Church-Turingove teze, Turingovega stroja
  3. Princip mnogoterosti je osnovni znanstveni
    princip
Write a Comment
User Comments (0)
About PowerShow.com