Title: Barcelona, 21 January 2005
1Towards Wide-Coverage Semantic Interpretation of
TextsJohan BosSchool of InformaticsUniversity
of EdinburghScotland,UK
2Semantic Interpretation
- Syntactic analysis
- Semantic analysis
- Inference
S
NP
VP
DET
VP
N
MOD
AUX
VP
PN
POS
Ralph s car did not start
3Semantic Interpretation
- Syntactic analysis
- Semantic analysis
- Inference
4Semantic Interpretation
- Syntactic analysis
- Semantic analysis
- Inference
Ralph s car didnt start ------------------------
-- Ralph has a car
5We can do this for small domains
- Applications
- Machine Translation
- Spoken Dialogue Systems
6But can we do this on a larger scale?
- Achieving wide coverage/robustness
- Semantic interpretation of
- newspaper texts
- web pages
- Five years ago impossible
7Wide-Coverage Semantic Interpretation
- Talk outline
- 1. Semantic Formalism
- 2. Combinatorial Categorial Grammar
- 3. Wide-Coverage Parsing
- 4. Inference
- 5. Conclusion
8Computational Semantics
- SemanticsThe branch of logic and linguistics
concerned with meaning - Computational SemanticsUsing a computer to build
meaning representations, and reason with the
result (inference)
9Discourse Representation Theory
- DRT well understood formalism
- Scope, anaphora, presupposition, tense, etc.
- Kamp 81, Kamp Reyle 93, Van der Sandt 92
- Representations (DRSs) can be build using
traditional tools - Lambda calculus
- Underspecification
- Model-theoretic interpretation
- Inference possible
- Translation to first-order logic
10DRT example
- Discourse Representation Structures (DRS)
- Box structures as a partial model
- Structure plays role in pronoun resolution
- Phenomena not covered
- Plurals
- Tense Aspect
- Ellipsis
A spokesman lied.
11Talk Outline
-
- 1. Semantic Formalism
- 2. Combinatorial Categorial Grammar
- 3. Wide-Coverage Parsing
- 4. Inference
- 5. Conclusion
12Combinatorial Categorial Grammar
- Semantic interpretation requires syntactic
analysis - We use CCG (Steedman 2001) because
- Deals with complex cases of coordination and
long-distance dependencies - Lexicalised, therefore easy to implement
- Fast wide-coverage parser available
13CCG type-driven lexicalised grammar
14CCG small set of combinatorial rules
- Forward Application (FA)
- Backward Application (BA)
- Generalised Forward Composition (FC)
- Backward Crossed Composition (BC)
- Type Raising (TR)
- Coordination
15CCG derivation
- NP/Na Nspokesman S\NPlied
-
16CCG derivation
- NP/Na Nspokesman S\NPlied
-
17CCG derivation
- NP/Na Nspokesman S\NPlied
- ------------------------------- (FA)
- NP a spokesman
-
18CCG derivation
- NP/Na Nspokesman S\NPlied
- ------------------------------- (FA)
- NP a spokesman
- ----------------------------------------
(BA) - S a spokesman lied
19Coordination in CCG
- s/(s\np)Artie (s\np)/nplikes (x\x)/xand
s/(s\np)Tony (s\np)/nphates npbeans - ------------------------------------ (FC)
--------------------------------------- (FC)
- s/np Artie likes
s/npTony hates -
--------------------------------------------------
----- (FA) -
(s/np)\(s/np)and Tony hates - ----------------------------------
-----------------------------------------------
(BA) -
s/np Artie likes and Tony hates -
----------------------------------------
-------------- (FA) -
s Artie likes and Tony
hates beans
20CCG lexical semantics
21CCG derivation
- NP/Na Nspokesman
S\NPlied - ?p. ?q. p(x)q(x) ?x.
?y. - --------------------------------------------------
------ (FA) - NP a spokesman
- ?q. q(x)
- ---------------------------------------
----------------------------------------- (BA) -
S a spokesman lied
22Talk Outline
-
- 1. Semantic Formalism
- 2. Combinatorial Categorial Grammar
- 3. Wide-Coverage Parsing
- 4. Inference
- 5. Conclusion
23The Clark Curran Parser
- Use standard statistical techniques
- Robust wide-coverage parser
- State-of-the-art performance
- Clark Curran (ACL 2004)
- Grammar derived from CCGbank
- 409 different categories
- Hockenmaier Steedman (ACL 2002)
24Combining CCG with DRT
- Supply semantic representations for CCG
categories - most frequent categories only (ca. 300)
- using lambda calculus
- Interpret combinatorial rules in terms of
functional application - Input CCG derivation
- Output Lambda-expression comprising a DRS
- Results 96 coverage WSJ
25System Overview
Raw Text
Tokeniser
Tokenised Text
CCG-parser
CCG Derivation
DRS-builder
DRSs
26Talk Outline
-
- 1. Semantic Formalism
- 2. Combinatorial Categorial Grammar
- 3. Wide-Coverage Parsing
- 4. Inference
- 5. Conclusion
27Inference
- Computational semantics without inferenceis not
computational semantics! - Inference tasks
- Consistency checking
- Informativeness checking
- Use first-order logic
- Theorem proving
- Model building
- Background knowledge required
28Why First-Order Logic?
- Why not use higher-order logic?
- Better match with formal semantics
- But Undecidable/no fast provers available
- Why not use weaker logics?
- Modal/description logics (decidable fragments)
- But Cant cope with all of natural language
- Why use first-order logic?
- Undecidable, but good inference tools available
- DRS translation to first-order logic
29(No Transcript)
30Yin and Yang of Inference
- Theorem Proving and Model Building function as
opposite forces - Assume ?, a logical formula, representing a
certain discourse ? - If a theorem prover succeeds in finding a proof
for ??, then ? is inconsistent - If a model builder succeeds to construct a model
for ?, then ? is consistent
31Inference Example
- DRS
- FOL ?x?y(spokesman(x) lie(y) agent(y,x))
- Model D d1,d2,d3
F(spokesman)d1,d2 F(lie)d3
F(agent)(d3,d2)
32Background Knowledge
- Background Knowledge
- Use hypernym relations from WordNet to build an
ontology - Create MiniWordNets for small texts
- Convert these into first-order axioms
- MiniWordNet for example text
- There is no asbestos in our products now. Neither
Lorillard nor the researchers who studied the
workers were aware of any research on smokers of
the Kent cigarettes.
33MiniWordNet
34MiniWordNet
?x(asbestos(x)?physical_thing(x)) ?x(asbestos(x)??
cigarette(x))
35System Overview
Raw Text
Tokeniser
Tokenised Text
CCG-parser
CCG Derivation
DRS-builder
DRSs
36System Overview
Raw Text
Tokeniser
Theorem Prover (Vampire7)
proofs
Tokenised Text
Model Builder (Paradox)
models
CCG-parser
CCG Derivation
WordNet
DRS-builder
Inference
DRSs
37Inference Results
- Consistency checking on WSJ
- 95 of DRSs consistent
- Inconsistent cases due to
- Inconsistencies in WordNet
- Errors in CCG analysis
- Inadequate semantic analysis (N coordination)
- WSD
- Use consistency check as filter for ambiguity
resolution
38Example inconsistent DRS
- Germans vote for a party , rather than a person ,
and - __________________________________
- x12 x16 x15 x10 x6 x13 x4
- ----------------------------------
- germans(x16)
- nn(x16,x12)
- vote(x12)
- party(x15)
- for(x12,x15)
- ______________
- x14
- __ --------------
- person(x14)
- for(x12,x14)
- ______________
-
39Talk Outline
- 1. Semantic Formalism
- 2. Combinatorial Categorial Grammar
- 3. Wide-Coverage Parsing
- 4. Inference
- 5. Conclusion
40Conclusion
- Results
- Converting raw text into semanticrepresentations
(coverage 96) - Implementing inference using tools from automated
reasoning (FOL) - Automatic background knowledge generation
(MiniWordNets) - System useful for NLP applications
- Question answering, semantic web, summarisation,
machine translation
41Future Work
- Computing background knowledge
- Use resources other than WordNet(FrameNet,
VerbNet, PrepNet, XWN) - Measuring semantic accuracy
- Build gold standard corpus
- Measuring semantic adequacy
- FRACAS natural lang. inference test suite
- Entailment task (PASCAL challenge)